Loading...
Loading...
Loading...
This section describes the logical replication protocol, which is the message flow started by the START_REPLICATION
SLOT
slot_name
LOGICAL
replication command.
The logical streaming replication protocol builds on the primitives of the physical streaming replication protocol.
The logical replication START_REPLICATION
command accepts following parameters:proto_version
Protocol version. Currently only version 1
is supported.publication_names
Comma separated list of publication names for which to subscribe (receive changes). The individual publication names are treated as standard objects names and can be quoted the same as needed.
The individual protocol messages are discussed in the following subsections. Individual messages are described in Section 52.9.
All top-level protocol messages begin with a message type byte. While represented in code as a character, this is a signed byte with no associated encoding.
Since the streaming replication protocol supplies a message length there is no need for top-level protocol messages to embed a length in their header.
With the exception of the START_REPLICATION
command and the replay progress messages, all information flows only from the backend to the frontend.
The logical replication protocol sends individual transactions one by one. This means that all messages between a pair of Begin and Commit messages belong to the same transaction.
Every sent transaction contains zero or more DML messages (Insert, Update, Delete). In case of a cascaded setup it can also contain Origin messages. The origin message indicated that the transaction originated on different replication node. Since a replication node in the scope of logical replication protocol can be pretty much anything, the only identifier is the origin name. It's downstream's responsibility to handle this as needed (if needed). The Origin message is always sent before any DML messages in the transaction.
Every DML message contains an arbitrary relation ID, which can be mapped to an ID in the Relation messages. The Relation messages describe the schema of the given relation. The Relation message is sent for a given relation either because it is the first time we send a DML message for given relation in the current session or because the relation definition has changed since the last Relation message was sent for it. The protocol assumes that the client is capable of caching the metadata for as many relations as needed.
The protocol has separate phases for startup and normal operation. In the startup phase, the frontend opens a connection to the server and authenticates itself to the satisfaction of the server. (This might involve a single message, or multiple messages depending on the authentication method being used.) If all goes well, the server then sends status information to the frontend, and finally enters normal operation. Except for the initial startup-request message, this part of the protocol is driven by the server.
During normal operation, the frontend sends queries and other commands to the backend, and the backend sends back query results and other responses. There are a few cases (such as NOTIFY
) wherein the backend will send unsolicited messages, but for the most part this portion of a session is driven by frontend requests.
Termination of the session is normally by frontend choice, but can be forced by the backend in certain cases. In any case, when the backend closes the connection, it will roll back any open (incomplete) transaction before exiting.
Within normal operation, SQL commands can be executed through either of two sub-protocols. In the “simple query” protocol, the frontend just sends a textual query string, which is parsed and immediately executed by the backend. In the “extended query” protocol, processing of queries is separated into multiple steps: parsing, binding of parameter values, and execution. This offers flexibility and performance benefits, at the cost of extra complexity.
Normal operation has additional sub-protocols for special operations such as COPY
.
All communication is through a stream of messages. The first byte of a message identifies the message type, and the next four bytes specify the length of the rest of the message (this length count includes itself, but not the message-type byte). The remaining contents of the message are determined by the message type. For historical reasons, the very first message sent by the client (the startup message) has no initial message-type byte.
To avoid losing synchronization with the message stream, both servers and clients typically read an entire message into a buffer (using the byte count) before attempting to process its contents. This allows easy recovery if an error is detected while processing the contents. In extreme situations (such as not having enough memory to buffer the message), the receiver can use the byte count to determine how much input to skip before it resumes reading messages.
Conversely, both servers and clients must take care never to send an incomplete message. This is commonly done by marshaling the entire message in a buffer before beginning to send it. If a communications failure occurs partway through sending or receiving a message, the only sensible response is to abandon the connection, since there is little hope of recovering message-boundary synchronization.
In the extended-query protocol, execution of SQL commands is divided into multiple steps. The state retained between steps is represented by two types of objects: prepared statements and portals. A prepared statement represents the result of parsing and semantic analysis of a textual query string. A prepared statement is not in itself ready to execute, because it might lack specific values for parameters. A portal represents a ready-to-execute or already-partially-executed statement, with any missing parameter values filled in. (For SELECT
statements, a portal is equivalent to an open cursor, but we choose to use a different term since cursors don't handle non-SELECT
statements.)
The overall execution cycle consists of a parse step, which creates a prepared statement from a textual query string; a bind step, which creates a portal given a prepared statement and values for any needed parameters; and an execute step that runs a portal's query. In the case of a query that returns rows (SELECT
, SHOW
, etc), the execute step can be told to fetch only a limited number of rows, so that multiple execute steps might be needed to complete the operation.
The backend can keep track of multiple prepared statements and portals (but note that these exist only within a session, and are never shared across sessions). Existing prepared statements and portals are referenced by names assigned when they were created. In addition, an “unnamed” prepared statement and portal exist. Although these behave largely the same as named objects, operations on them are optimized for the case of executing a query only once and then discarding it, whereas operations on named objects are optimized on the expectation of multiple uses.
Data of a particular data type might be transmitted in any of several different formats. As of PostgreSQL 7.4 the only supported formats are “text” and “binary”, but the protocol makes provision for future extensions. The desired format for any value is specified by a format code. Clients can specify a format code for each transmitted parameter value and for each column of a query result. Text has format code zero, binary has format code one, and all other format codes are reserved for future definition.
The text representation of values is whatever strings are produced and accepted by the input/output conversion functions for the particular data type. In the transmitted representation, there is no trailing null character; the frontend must add one to received values if it wants to process them as C strings. (The text format does not allow embedded nulls, by the way.)
Binary representations for integers use network byte order (most significant byte first). For other data types consult the documentation or source code to learn about the binary representation. Keep in mind that binary representations for complex data types might change across server versions; the text format is usually the more portable choice.
PostgreSQLuses a message-based protocol for communication between frontends and backends (clients and servers). The protocol is supported overTCP/IPand also over Unix-domain sockets. Port number 5432 has been registered with IANA as the customary TCP port number for servers supporting this protocol, but in practice any non-privileged port number can be used.
This document describes version 3.0 of the protocol, implemented inPostgreSQL7.4 and later. For descriptions of the earlier protocol versions, see previous releases of thePostgreSQLdocumentation. A single server can support multiple protocol versions. The initial startup-request message tells the server which protocol version the client is attempting to use, and then the server follows that protocol if it is able.
In order to serve multiple clients efficiently, the server launches a new“backend”process for each client. In the current implementation, a new child process is created immediately after an incoming connection is detected. This is transparent to the protocol, however. For purposes of the protocol, the terms“backend”and“server”are interchangeable; likewise“frontend”and“client”are interchangeable.