PostgreSQL 正體中文使用手冊
PostgreSQL.TW官方使用手冊小島故事加入社團
11
11
  • 簡介
  • 前言
    • 1. 什麼是PostgreSQL?
    • 2. PostgreSQL沿革
    • 3. 慣例
    • 4. 其他參考資訊
    • 5. 問題回報指南
  • I. 新手教學
    • 1. 入門指南
      • 1.1. 安裝
      • 1.2. 基礎架構
      • 1.3. 建立一個資料庫
      • 1.4. 存取一個資料庫
    • 2. SQL查詢語言
      • 2.1. 簡介
      • 2.2. 概念
      • 2.3. 創建一個新的資料表
      • 2.4. 資料列是資料表的組成單位
      • 2.5. 資料表的查詢
      • 2.6. 交叉查詢
      • 2.7. 彙總查詢
      • 2.8. 更新資料
      • 2.9. 刪除資料
    • 3. 先進功能
      • 3.1. 簡介
      • 3.2. 檢視表(View)
      • 3.3. 外部索引鍵
      • 3.4. 交易安全
      • 3.5. 窗函數
      • 3.6. 繼承
      • 3.7. 結論
  • II. SQL查詢語言
    • 4. SQL語法
      • 4.1. 語法結構
      • 4.2. 參數表示式
      • 4.3. 函數呼叫
    • 5. 定義資料結構
      • 5.1. 認識資料表
      • 5.2. 預設值
      • 5.3. 限制條件
      • 5.4. 系統欄位
      • 5.5. 表格變更
      • 5.6. 權限
      • 5.7. 資料列安全原則
      • 5.8. Schemas
      • 5.9. 繼承
      • 5.10. 分割資料表
      • 5.11. 外部資料
      • 5.12. 其他資料庫物件
      • 5.13. 相依性追蹤
    • 6. 資料處理
      • 6.1. 新增資料
      • 6.2. 更新資料
      • 6.3. 刪除資料
      • 6.4. 修改並回傳資料
    • 7. 資料查詢
      • 7.1. 概觀
      • 7.2. 資料表表示式
      • 7.3. 取得資料列表
      • 7.4. 合併查詢結果
      • 7.5. 資料排序
      • 7.6. 指定資料範圍
      • 7.7. 列舉資料
      • 7.8. 遞迴查詢(Common Table Expressions)
    • 8. 資料型別
      • 8.1. 數字型別
      • 8.2. 貨幣型別
      • 8.3. 字串型別
      • 8.4. 位元組型別(bytea)
      • 8.5. 日期時間型別
      • 8.6. 布林型別
      • 8.7. 列舉型別
      • 8.8. 地理資訊型別
      • 8.9. 網路資訊型別
      • 8.10. 位元字串型別
      • 8.11. 全文檢索型別
      • 8.12. UUID型別
      • 8.13. XML型別
      • 8.14. JSON型別
      • 8.15. 陣列
      • 8.16. 複合型別
      • 8.17. 範圍型別
      • 8.18. 指標型別
      • 8.19. pg_lsn型別
      • 8.20. 概念型別
    • 9. 函式及運算子
      • 9.1. 邏輯運算子
      • 9.2. 比較函式及運算子
      • 9.3. 數學函式及運算子
      • 9.4. 字串函式及運算子
      • 9.5. 位元字串函式及運算子
      • 9.6. 二元字串函式及運算子
      • 9.7. 特徵比對
      • 9.8. 型別轉換函式
      • 9.9 日期時間函式及運算子
      • 9.10. 列舉型別函式
      • 9.11. 地理資訊函式及運算子
      • 9.12. 網路位址函式及運算子
      • 9.13. 文字檢索函式及運算子
      • 9.14. XML函式
      • 9.15. JSON函式及運算子
      • 9.16. 序列函式
      • 9.17. 條件表示式
      • 9.18. 陣列函式及運算子
      • 9.19. 範圍函式及運算子
      • 9.20. 彙總函數
      • 9.21. Window函式
      • 9.22. 子查詢
      • 9.23. 資料列與陣列的比較運算
      • 9.24. 集合回傳函式
      • 9.25. 系統資訊函數
      • 9.26. 系統管理函式
      • 9.27. 觸發函式
      • 9.28. 事件觸發函式
    • 10. 型別轉換
      • 10.1. 概觀
      • 10.2. 運算子
      • 10.3. 函式
      • 10.4. 資料儲存轉換規則
      • 10.5. UNION、CASE 等相關結構
      • 10.6. SELECT輸出規則
    • 11. 索引(Index)
      • 11.1. 簡介
      • 11.2. 索引型別
      • 11.3. 多欄位索引
      • 11.4. 索引與ORDER BY
      • 11.5. 善用多個索引
      • 11.6. 唯一值索引
      • 11.7. 表示式索引
      • 11.8. 部份索引(partial index)
      • 11.9. 運算子物件及家族
      • 11.10. 索引與排序規則
      • 11.11. 索引限定查詢(Index-only scan)
      • 11.12. 檢查索引運用
    • 12. 全文檢索
      • 12.1. 簡介
      • 12.2. 查詢與索引
      • 12.3. 細部控制
      • 12.4. 延伸功能
      • 12.5. 斷詞
      • 12.6. 字典
      • 12.7. 組態範例
      • 12.8. 測試與除錯
      • 12.9. GIN及GiST索引型別
      • 12.10. psql支援
      • 12.11. 功能限制
    • 13. 一致性管理(MVCC)
      • 13.1. 簡介
      • 13.2. 交易隔離
      • 13.3. 鎖定模式
      • 13.4. 在應用端檢視資料一致性
      • 13.5. 特別注意
      • 13.6. 鎖定與索引
    • 14. 效能技巧
      • 14.1. 善用EXPLAIN
      • 14.2. 統計資訊
      • 14.3. 使用確切的JOIN方式
      • 14.4. 快速建立資料庫內容
      • 14.5. 彈性設定
    • 15. 平行查詢
      • 15.1. 如何運作?
      • 15.2. 啓用時機?
      • 15.3. 平行查詢計畫
      • 15.4. 平行查詢的安全性
  • III. 系統管理
    • 16. 用原始碼安裝
      • 16.1. Short Version
      • 16.2. Requirements
      • 16.3. Getting The Source
      • 16.4. 安裝流程
      • 16.5. Post-Installation Setup
      • 16.6. Supported Platforms
      • 16.7. 平台相關的注意事項
    • 17. 用原始碼在 Windows 上安裝
      • 17.1. Building with Visual C++ or the Microsoft Windows SDK
    • 18. 服務配置與維運
      • 18.1. PostgreSQL 使用者帳號
      • 18.2. Creating a Database Cluster
      • 18.3. Starting the Database Server
      • 18.4. 核心資源管理
      • 18.5. Shutting Down the Server
      • 18.6. Upgrading a PostgreSQL Cluster
      • 18.7. Preventing Server Spoofing
      • 18.8. Encryption Options
      • 18.9. Secure TCP/IP Connections with SSL
      • 18.10. Secure TCP/IP Connections with SSH Tunnels
      • 18.11. 在 Windows 註冊事件日誌
    • 19. 服務組態設定
      • 19.1. Setting Parameters
      • 19.2. File Locations
      • 19.3. 連線與認證
      • 19.4. 資源配置
      • 19.5. Write Ahead Log
      • 19.6. 複寫(Replication)
      • 19.7. 查詢規畫
      • 19.8. 錯誤回報與日誌記錄
      • 19.9. Run-time Statistics
      • 19.10. 自動資料庫清理
      • 19.11. 用戶端連線預設參數
      • 19.12. 交易鎖定管理
      • 19.13. 版本與平台的相容性
      • 19.14. Error Handling
      • 19.15. 預先配置的參數
      • 19.16. Customized Options
      • 19.17. Developer Options
      • 19.18. Short Options
    • 20. 使用者認證
      • 20.1. 設定檔:pg_hba.conf
      • 20.2. User Name Maps
      • 20.3. Authentication Methods
      • 20.4. Authentication Problems
    • 21. 資料庫角色
      • 21.1. Database Roles
      • 21.2. Role Attributes
      • 21.3. Role Membership
      • 21.4. 移除角色
      • 21.5. Default Roles
      • 21.6. Function Security
    • 22. Managing Databases
      • 22.1. Overview
      • 22.2. Creating a Database
      • 22.3. 樣版資料庫
      • 22.4. Database Configuration
      • 22.5. Destroying a Database
      • 22.6. Tablespaces
    • 23. 語系
      • 23.1. 語系支援
      • 23.2. Collation Support
      • 23.3. 字元集支援
    • 24. 例行性資料庫維護工作
      • 24.1. 例行性資料清理
      • 24.2. 定期重建索引
      • 24.3. Log File Maintenance
    • 25. 備份及還原
      • 25.1. SQL Dump
      • 25.2. File System Level Backup
      • 25.3. Continuous Archiving and Point-in-Time Recovery (PITR)
    • 26. High Availability, Load Balancing, and Replication
      • 26.1. Comparison of Different Solutions
      • 26.2. 日誌轉送備用伺服器 Log-Shipping Standby Servers
      • 26.3. Failover
      • 26.4. Alternative Method for Log Shipping
      • 26.5. Hot Standby
    • 27. Recovery Configuration
      • 27.1. Archive Recovery Settings
      • 27.2. Recovery Target Settings
      • 27.3. Standby Server Settings
    • 28. 監控資料庫活動
      • 28.1. Standard Unix Tools
      • 28.2. 統計資訊收集器
      • 28.3. Viewing Locks
      • 28.4. Progress Reporting
      • 28.5. Dynamic Tracing
    • 29. Monitoring Disk Usage
      • 29.1. Determining Disk Usage
      • 29.2. Disk Full Failure
    • 30. 高可靠度及預寫日誌
      • 30.1. Reliability
      • 30.2. Write-Ahead Logging (WAL)
      • 30.3. Asynchronous Commit
      • 30.4. WAL Configuration
      • 30.5. WAL Internals
    • 31. 邏輯複寫(Logical Replication)
      • 31.1. 發佈(Publication)
      • 31.2. 訂閱(Subscription)
      • 31.3. 衝突處理
      • 31.4. 限制
      • 31.5. 架構
      • 31.6. 監控
      • 31.7. 安全性
      • 31.8. 系統設定
      • 31.9. 快速設定
    • 32. Just-in-Time Compilation (JIT)
      • 32.1. What is JIT compilation?
      • 32.2. When to JIT?
      • 32.3. Configuration
      • 32.4. Extensibility
    • 33. 迴歸測試
      • 33.1. Running the Tests
      • 33.2. Test Evaluation
      • 33.3. Variant Comparison Files
      • 33.4. TAP Tests
      • 33.5. Test Coverage Examination
  • IV. 用戶端介面
    • 34. libpq - C Library
      • 34.1. 資料庫連線控制函數
      • 34.2. 連線狀態函數
      • 34.3. Command Execution Functions
      • 34.4. Asynchronous Command Processing
      • 34.5. Retrieving Query Results Row-By-Row
      • 34.6. Canceling Queries in Progress
      • 34.7. The Fast-Path Interface
      • 34.8. Asynchronous Notification
      • 34.9. Functions Associated with the COPY Command
      • 34.10. Control Functions
      • 34.11. Miscellaneous Functions
      • 34.12. Notice Processing
      • 34.13. Event System
      • 34.14. 環境變數
      • 34.15. 密碼檔
      • 34.16. The Connection Service File
      • 34.17. LDAP Lookup of Connection Parameters
      • 34.18. SSL Support
      • 34.19. Behavior in Threaded Programs
      • 34.20. Building libpq Programs
      • 34.21. Example Programs
    • 35. Large Objects
      • 35.1. Introduction
      • 35.2. Implementation Features
      • 35.3. Client Interfaces
      • 35.4. Server-side Functions
      • 35.5. Example Program
    • 36. ECPG - Embedded SQL in C
      • 36.1. The Concept
      • 36.2. Managing Database Connections
      • 36.3. Running SQL Commands
      • 36.4. Using Host Variables
      • 36.5. Dynamic SQL
      • 36.6. pgtypes Library
      • 36.7. Using Descriptor Areas
      • 36.8. Error Handling
      • 36.9. Preprocessor Directives
      • 36.10. Processing Embedded SQL Programs
      • 36.11. Library Functions
      • 36.12. Large Objects
      • 36.13. C++ Applications
      • 36.14. Embedded SQL Commands
      • 36.15. Informix Compatibility Mode
      • 36.16. Internals
    • 37. The Information Schema
      • 37.1. The Schema
      • 37.2. Data Types
      • 37.3. information_schema_catalog_name
      • 37.4. administrable_role_authorizations
      • 37.5. applicable_roles
      • 37.6. attributes
      • 37.7. character_sets
      • 37.8. check_constraint_routine_usage
      • 37.9. check_constraints
      • 37.10. collations
      • 37.11. collation_character_set_applicability
      • 37.12. column_domain_usage
      • 37.13. column_options
      • 37.14. column_privileges
      • 37.15. column_udt_usage
      • 37.16. columns
      • 37.17. constraint_column_usage
      • 37.18. constraint_table_usage
      • 37.19. data_type_privileges
      • 37.20. domain_constraints
      • 37.21. domain_udt_usage
      • 37.22. domains
      • 37.23. element_types
      • 37.24. enabled_roles
      • 37.25. foreign_data_wrapper_options
      • 37.26. foreign_data_wrappers
      • 37.27. foreign_server_options
      • 37.28. foreign_servers
      • 37.29. foreign_table_options
      • 37.30. foreign_tables
      • 37.31. key_column_usage
      • 37.32. parameters
      • 37.33. referential_constraints
      • 37.34. role_column_grants
      • 37.35. role_routine_grants
      • 37.36. role_table_grants
      • 37.37. role_udt_grants
      • 37.38. role_usage_grants
      • 37.39. routine_privileges
      • 37.40. routines
      • 37.41. schemata
      • 37.42. sequences
      • 37.43. sql_features
      • 37.44. sql_implementation_info
      • 37.45. sql_languages
      • 37.46. sql_packages
      • 37.47. sql_parts
      • 37.48. sql_sizing
      • 37.49. sql_sizing_profiles
      • 37.50. table_constraints
      • 37.51. table_privileges
      • 37.52. tables
      • 37.53. transforms
      • 37.54. triggered_update_columns
      • 37.55. triggers
      • 37.56. udt_privileges
      • 37.57. usage_privileges
      • 37.58. user_defined_types
      • 37.59. user_mapping_options
      • 37.60. user_mappings
      • 37.61. view_column_usage
      • 37.62. view_routine_usage
      • 37.63. view_table_usage
      • 37.64. views
  • V. 資料庫程式設計
    • 38. SQL 延伸功能
      • 38.1. How Extensibility Works
      • 38.2. The PostgreSQL Type System
      • 38.3. 使用者自訂函數
      • 38.4. User-defined Procedures
      • 38.5. Query Language (SQL) Functions
      • 38.6. Function Overloading
      • 38.7. 函數易變性類別
      • 38.8. Procedural Language Functions
      • 38.9. Internal Functions
      • 38.10. C-Language Functions
      • 38.11. User-defined Aggregates
      • 38.12. User-defined Types
      • 38.13. User-defined Operators
      • 38.14. Operator Optimization Information
      • 38.15. Interfacing Extensions To Indexes
      • 38.16. Packaging Related Objects into an Extension
      • 38.17. Extension Building Infrastructure
    • 39. Triggers
    • 40. Event Triggers
    • 41. 規則系統
      • 41.1. The Query Tree
      • 41.2. Views and the Rule System
      • 41.3. Materialized Views
      • 41.4. Rules on INSERT, UPDATE, and DELETE
      • 41.5. 規則及權限
      • 41.6. Rules and Command Status
      • 41.7. Rules Versus Triggers
    • 42. Procedural Languages(程序語言)
      • 42.1. Installing Procedural Languages
    • 43. PL/pgSQL - SQL Procedural Language
      • 43.5. 基本語法
    • 44. PL/Tcl - Tcl Procedural Language
    • 45. PL/Perl - Perl Procedural Language
    • 46. PL/Python - Python Procedural Language
    • 47. Server Programming Interface
    • 48. Background Worker Processes
    • 49. Logical Decoding
    • 50. Replication Progress Tracking
  • VI. 參考資訊
    • I. SQL 指令
      • ALTER DATABASE
      • ALTER DEFAULT PRIVILEGES
      • ALTER EXTENSION
      • ALTER FUNCTION
      • ALTER INDEX
      • ALTER LANGUAGE
      • ALTER MATERIALIZED VIEW
      • ALTER POLICY
      • ALTER PUBLICATION
      • ALTER ROLE
      • ALTER RULE
      • ALTER SCHEMA
      • ALTER SEQUENCE
      • ALTER STATISTICS
      • ALTER SUBSCRIPTION
      • ALTER TABLE
      • ALTER TABLESPACE
      • ALTER TRIGGER
      • ALTER TYPE
      • ALTER VIEW
      • ANALYZE
      • CLUSTER
      • COMMENT
      • COPY
      • CREATE CAST
      • CREATE DATABASE
      • CREATE EXTENSION
      • CREATE FOREIGN TABLE
      • CREATE FOREIGN DATA WRAPPER
      • CREATE FUNCTION
      • CREATE INDEX
      • CREATE LANGUAGE
      • CREATE MATERIALIZED VIEW
      • CREATE DOMAIN
      • CREATE POLICY
      • CREATE PROCEDURE
      • CREATE PUBLICATION
      • CREATE ROLE
      • CREATE RULE
      • CREATE SCHEMA
      • CREATE SEQUENCE
      • CREATE SERVER
      • CREATE STATISTICS
      • CREATE SUBSCRIPTION
      • CREATE TABLE
      • CREATE TABLE AS
      • CREATE TABLESPACE
      • CREATE TRANSFORM
      • CREATE TRIGGER
      • CREATE TYPE
      • CREATE USER
      • CREATE USER MAPPING
      • CREATE VIEW
      • DELETE
      • DO
      • DROP DATABASE
      • DROP EXTENSION
      • DROP FUNCTION
      • DROP INDEX
      • DROP LANGUAGE
      • DROP MATERIALIZED VIEW
      • DROP OWNED
      • DROP POLICY
      • DROP ROLE
      • DROP RULE
      • DROP SCHEMA
      • DROP SEQUENCE
      • DROP STATISTICS
      • DROP SUBSCRIPTION
      • DROP TABLE
      • DROP TABLESPACE
      • DROP TRANSFORM
      • DROP TRIGGER
      • DROP TYPE
      • DROP USER
      • DROP VIEW
      • EXECUTE
      • EXPLAIN
      • GRANT
      • IMPORT FOREIGN SCHEMA
      • INSERT
      • LISTEN
      • LOAD
      • NOTIFY
      • PREPARE TRANSACTION
      • REASSIGN OWNED
      • REFRESH MATERIALIZED VIEW
      • REINDEX
      • RESET
      • REVOKE
      • SELECT
      • SELECT INTO
      • SET
      • SET CONSTRAINTS
      • SET ROLE
      • SET SESSION AUTHORIZATION
      • SET TRANSACTION
      • SHOW
      • TRUNCATE
      • UNLISTEN
      • UPDATE
      • VACUUM
      • VALUES
    • II. PostgreSQL 用戶端工具
      • createdb
      • createuser
      • dropdb
      • dropuser
      • pgbench
      • pg_dump
      • psql
      • vacuumdb
    • III. PostgreSQL 伺服器應用程式
      • pg_test_timing
      • postgres
  • VII. 資料庫進階
    • 52. 系統目錄
      • 52.3. pg_am
      • 52.7. pg_attribute
      • 52.8. pg_authid
      • 52.9. pg_auth_members
      • 52.11 pg_class
      • 52.12. pg_collation
      • 52.13. pg_constraint
      • 52.15 pg_database
      • 52.26 pg_index
      • 52.29. pg_language
      • 52.32. pg_namespace
      • 52.33. pg_opclass
      • 52.38. pg_policy
      • 52.39. pg_proc
      • 52.44. pg_rewrite
      • 52.50. pg_statistic
      • 52.51. pg_statistic_ext
      • 52.54. pg_tablespace
      • 52.56. pg_trigger
      • 52.62. pg_type
      • 52.79. pg_replication_origin_status
      • 52.81 pg_roles
      • 52.85. pg_settings
      • 52.87. pg_stats
    • 53. Frontend/Backend Protocol
      • 53.1. Overview
      • 53.2. Message Flow
      • 53.3. SASL Authentication
      • 53.4. Streaming Replication Protocol
      • 53.5. Logical Streaming Replication Protocol
      • 53.6. Message Data Types
      • 53.7. Message Formats
      • 53.8. Error and Notice Message Fields
      • 53.9. Logical Replication Message Formats
      • 53.10. Summary of Changes since Protocol 2.0
    • 54. PostgreSQL 程式撰寫慣例
      • 54.1. Formatting
      • 54.2. Reporting Errors Within the Server
      • 54.3. Error Message Style Guide
      • 54.4. Miscellaneous Coding Conventions
    • 56. Writing A Procedural Language Handler
    • 64. GiST Indexes
      • 64.1. Introduction
      • 64.2. Built-in Operator Classes
      • 64.3. Extensibility
      • 64.4. Implementation
      • 64.5. Examples
    • 65. SP-GiST Indexes
      • 65.1. Introduction
      • 65.2. Built-in Operator Classes
      • 65.3. Extensibility
      • 65.4. Implementation
      • 65.5. Examples
    • 66. GIN 索引
      • 66.1. 簡介
      • 66.2. 內建運算子類
      • 66.3. Extensibility
      • 66.4. Implementation
      • 66.5. GIN Tips and Tricks
      • 66.6. Limitations
      • 66.7. Examples
    • 67. BRIN Indexes
      • 67.1. Introduction
      • 67.2. Built-in Operator Classes
      • 67.3. Extensibility
    • 68. 資料庫實體儲存格式
      • 68.2. TOAST
      • 68.4 可視性映射表(Visibility Map)
    • 70. How the Planner Uses Statistics
      • 70.2. Multivariate Statistics Examples
  • VIII. 附錄
    • A. PostgreSQL錯誤代碼
    • B. 日期時間格式支援
      • B.1. 日期時間解譯流程
      • B.2. 日期時間慣用字
      • B.3. 日期時間設定檔
      • B.4. 日期時間的沿革
    • C. SQL 關鍵字
    • D. SQL 相容性
    • E. 版本資訊
    • F. 延伸支援模組
      • F.4. auto_explain
      • F.11. dblink
        • dblink
      • F.33. pg_visibility
    • G. Additional Supplied Programs
      • G.1. Client Applications
        • oid2name
        • vacuumlo
      • G.2. Server Applications
        • pg_standby
    • H. 外部專案
      • H.1. 用戶端介面
      • H.2. Administration Tools
      • H.3. Procedural Languages
      • H.4. Extensions
    • I. The Source Code Repository
      • I.1. Getting The Source via Git
    • J. 文件取得
    • K. 縮寫字
  • 參考書目
Powered by GitBook
On this page
  • Synopsis
  • Description
  • Options
  • Note
  • Note
  • Note
  • Note
  • Environment
  • Diagnostics
  • Notes
  • Examples
  • See Also

Was this helpful?

Edit on Git
Export as PDF
  1. VI. 參考資訊
  2. II. PostgreSQL 用戶端工具

pg_dump

PreviouspgbenchNextpsql

Last updated 5 years ago

Was this helpful?

pg_dump — extract a PostgreSQL database into a script file or other archive file

Synopsis

pg_dump [connection-option...] [option...] [dbname]

Description

pg_dump is a utility for backing up a PostgreSQL database. It makes consistent backups even if the database is being used concurrently. pg_dump does not block other users accessing the database (readers or writers).

pg_dump only dumps a single database. To back up an entire cluster, or to back up global objects that are common to all databases in a cluster (such as roles and tablespaces), use .

Dumps can be output in script or archive file formats. Script dumps are plain-text files containing the SQL commands required to reconstruct the database to the state it was in at the time it was saved. To restore from such a script, feed it to . Script files can be used to reconstruct the database even on other machines and other architectures; with some modifications, even on other SQL database products.

The alternative archive file formats must be used with to rebuild the database. They allow pg_restore to be selective about what is restored, or even to reorder the items prior to being restored. The archive file formats are designed to be portable across architectures.

When used with one of the archive file formats and combined with pg_restore, pg_dump provides a flexible archival and transfer mechanism. pg_dump can be used to backup an entire database, then pg_restore can be used to examine the archive and/or select which parts of the database are to be restored. The most flexible output file formats are the “custom” format (-Fc) and the “directory”format (-Fd). They allow for selection and reordering of all archived items, support parallel restoration, and are compressed by default. The “directory” format is the only format that supports parallel dumps.

While running pg_dump, one should examine the output for any warnings (printed on standard error), especially in light of the limitations listed below.

Options

The following command-line options control the content and format of the output.

dbname

Specifies the name of the database to be dumped. If this is not specified, the environment variable PGDATABASE is used. If that is not set, the user name specified for the connection is used.

-a --data-only

Dump only the data, not the schema (data definitions). Table data, large objects, and sequence values are dumped.

This option is similar to, but for historical reasons not identical to, specifying --section=data.

-b --blobs

Include large objects in the dump. This is the default behavior except when --schema, --table, or --schema-only is specified. The -b switch is therefore only useful to add large objects to dumps where a specific schema or table has been requested. Note that blobs are considered data and therefore will be included when --data-only is used, but not when --schema-only is.

-B --no-blobs

Exclude large objects in the dump.

When both -b and -B are given, the behavior is to output large objects, when data is being dumped, see the -b documentation.

-c --clean

Output commands to clean (drop) database objects prior to outputting the commands for creating them. (Unless --if-exists is also specified, restore might generate some harmless error messages, if any objects were not present in the destination database.)

This option is only meaningful for the plain-text format. For the archive formats, you can specify the option when you call pg_restore.

-C --create

Begin the output with a command to create the database itself and reconnect to the created database. (With a script of this form, it doesn't matter which database in the destination installation you connect to before running the script.) If --clean is also specified, the script drops and recreates the target database before reconnecting to it.

With --create, the output also includes the database's comment if any, and any configuration variable settings that are specific to this database, that is, any ALTER DATABASE ... SET ... and ALTER ROLE ... IN DATABASE ... SET ... commands that mention this database. Access privileges for the database itself are also dumped, unless --no-acl is specified.

This option is only meaningful for the plain-text format. For the archive formats, you can specify the option when you call pg_restore.

-E encoding --encoding=encoding

Create the dump in the specified character set encoding. By default, the dump is created in the database encoding. (Another way to get the same result is to set the PGCLIENTENCODINGenvironment variable to the desired dump encoding.)

-f file --file=file

Send output to the specified file. This parameter can be omitted for file based output formats, in which case the standard output is used. It must be given for the directory output format however, where it specifies the target directory instead of a file. In this case the directory is created by pg_dump and must not exist before.

-F format --format=format

Selects the format of the output. format can be one of the following:

p plain

Output a plain-text SQL script file (the default).

c custom

Output a custom-format archive suitable for input into pg_restore. Together with the directory output format, this is the most flexible output format in that it allows manual selection and reordering of archived items during restore. This format is also compressed by default.

d directory

Output a directory-format archive suitable for input into pg_restore. This will create a directory with one file for each table and blob being dumped, plus a so-called Table of Contents file describing the dumped objects in a machine-readable format that pg_restore can read. A directory format archive can be manipulated with standard Unix tools; for example, files in an uncompressed archive can be compressed with the gzip tool. This format is compressed by default and also supports parallel dumps.

t tar

Output a tar-format archive suitable for input into pg_restore. The tar format is compatible with the directory format: extracting a tar-format archive produces a valid directory-format archive. However, the tar format does not support compression. Also, when using tar format the relative order of table data items cannot be changed during restore.

-j njobs --jobs=njobs

Run the dump in parallel by dumping njobs tables simultaneously. This option reduces the time of the dump but it also increases the load on the database server. You can only use this option with the directory output format because this is the only output format where multiple processes can write their data at the same time.

Requesting exclusive locks on database objects while running a parallel dump could cause the dump to fail. The reason is that the pg_dump master process requests shared locks on the objects that the worker processes are going to dump later in order to make sure that nobody deletes them and makes them go away while the dump is running. If another client then requests an exclusive lock on a table, that lock will not be granted but will be queued waiting for the shared lock of the master process to be released. Consequently any other access to the table will not be granted either and will queue after the exclusive lock request. This includes the worker process trying to dump the table. Without any precautions this would be a classic deadlock situation. To detect this conflict, the pg_dump worker process requests another shared lock using the NOWAIT option. If the worker process is not granted this shared lock, somebody else must have requested an exclusive lock in the meantime and there is no way to continue with the dump, so pg_dump has no choice but to abort the dump.

For a consistent backup, the database server needs to support synchronized snapshots, a feature that was introduced in PostgreSQL 9.2 for primary servers and 10 for standbys. With this feature, database clients can ensure they see the same data set even though they use different connections. pg_dump -j uses multiple database connections; it connects to the database once with the master process and once again for each worker job. Without the synchronized snapshot feature, the different worker jobs wouldn't be guaranteed to see the same data in each connection, which could lead to an inconsistent backup.

If you want to run a parallel dump of a pre-9.2 server, you need to make sure that the database content doesn't change from between the time the master connects to the database until the last worker job has connected to the database. The easiest way to do this is to halt any data modifying processes (DDL and DML) accessing the database before starting the backup. You also need to specify the --no-synchronized-snapshots parameter when running pg_dump -j against a pre-9.2 PostgreSQL server.

-n schema --schema=schema

Note

When -n is specified, pg_dump makes no attempt to dump any other database objects that the selected schema(s) might depend upon. Therefore, there is no guarantee that the results of a specific-schema dump can be successfully restored by themselves into a clean database.

Note

Non-schema objects such as blobs are not dumped when -n is specified. You can add blobs back to the dump with the --blobs switch.

-N schema --exclude-schema=schema

Do not dump any schemas matching the schema pattern. The pattern is interpreted according to the same rules as for -n. -N can be given more than once to exclude schemas matching any of several patterns.

When both -n and -N are given, the behavior is to dump just the schemas that match at least one -n switch but no -N switches. If -N appears without -n, then schemas matching -N are excluded from what is otherwise a normal dump.

-o --oids

Dump object identifiers (OIDs) as part of the data for every table. Use this option if your application references the OID columns in some way (e.g., in a foreign key constraint). Otherwise, this option should not be used.

-O --no-owner

Do not output commands to set ownership of objects to match the original database. By default, pg_dump issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set ownership of created database objects. These statements will fail when the script is run unless it is started by a superuser (or the same user that owns all of the objects in the script). To make a script that can be restored by any user, but will give that user ownership of all the objects, specify -O.

This option is only meaningful for the plain-text format. For the archive formats, you can specify the option when you call pg_restore.

-R --no-reconnect

This option is obsolete but still accepted for backwards compatibility.

-s --schema-only

Dump only the object definitions (schema), not data.

This option is the inverse of --data-only. It is similar to, but for historical reasons not identical to, specifying --section=pre-data --section=post-data.

(Do not confuse this with the --schema option, which uses the word “schema” in a different meaning.)

To exclude table data for only a subset of tables in the database, see --exclude-table-data.

-S username --superuser=username

Specify the superuser user name to use when disabling triggers. This is relevant only if --disable-triggers is used. (Usually, it's better to leave this out, and instead start the resulting script as superuser.)

-t table --table=table

The -n and -N switches have no effect when -t is used, because tables selected by -t will be dumped regardless of those switches, and non-table objects will not be dumped.

Note

When -t is specified, pg_dump makes no attempt to dump any other database objects that the selected table(s) might depend upon. Therefore, there is no guarantee that the results of a specific-table dump can be successfully restored by themselves into a clean database.

Note

The behavior of the -t switch is not entirely upward compatible with pre-8.2PostgreSQL versions. Formerly, writing -t tab would dump all tables named tab, but now it just dumps whichever one is visible in your default search path. To get the old behavior you can write -t '*.tab'. Also, you must write something like -t sch.tab to select a table in a particular schema, rather than the old locution of -n sch -t tab.-T table --exclude-table=table

Do not dump any tables matching the table pattern. The pattern is interpreted according to the same rules as for -t. -T can be given more than once to exclude tables matching any of several patterns.

When both -t and -T are given, the behavior is to dump just the tables that match at least one -t switch but no -T switches. If -T appears without -t, then tables matching -T are excluded from what is otherwise a normal dump.

-v --verbose

Specifies verbose mode. This will cause pg_dump to output detailed object comments and start/stop times to the dump file, and progress messages to standard error.

-V --version

Print the pg_dump version and exit.

-x --no-privileges --no-acl

Prevent dumping of access privileges (grant/revoke commands).

-Z 0..9 --compress=0..9

Specify the compression level to use. Zero means no compression. For the custom archive format, this specifies compression of individual table-data segments, and the default is to compress at a moderate level. For plain text output, setting a nonzero compression level causes the entire output file to be compressed, as though it had been fed through gzip; but the default is not to compress. The tar archive format currently does not support compression at all.

--binary-upgrade

This option is for use by in-place upgrade utilities. Its use for other purposes is not recommended or supported. The behavior of the option may change in future releases without notice.

--column-inserts --attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO table (column, ...) VALUES ...). This will make restoration very slow; it is mainly useful for making dumps that can be loaded into non-PostgreSQL databases. However, since this option generates a separate command for each row, an error in reloading a row causes only that row to be lost rather than the entire table contents.

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be quoted using SQL standard string syntax.

--disable-triggers

This option is relevant only when creating a data-only dump. It instructs pg_dump to include commands to temporarily disable triggers on the target tables while the data is reloaded. Use this if you have referential integrity checks or other triggers on the tables that you do not want to invoke during data reload.

Presently, the commands emitted for --disable-triggers must be done as superuser. So, you should also specify a superuser name with -S, or preferably be careful to start the resulting script as a superuser.

This option is only meaningful for the plain-text format. For the archive formats, you can specify the option when you call pg_restore.

--enable-row-security

Note that if you use this option currently, you probably also want the dump be in INSERT format, as the COPY FROM during restore does not support row security.

--exclude-table-data=table

Do not dump data for any tables matching the table pattern. The pattern is interpreted according to the same rules as for -t. --exclude-table-data can be given more than once to exclude tables matching any of several patterns. This option is useful when you need the definition of a particular table even though you do not need the data in it.

To exclude data for all tables in the database, see --schema-only.

--if-exists

Use conditional commands (i.e. add an IF EXISTS clause) when cleaning database objects. This option is not valid unless --clean is also specified.

--inserts

Dump data as INSERT commands (rather than COPY). This will make restoration very slow; it is mainly useful for making dumps that can be loaded into non-PostgreSQL databases. However, since this option generates a separate command for each row, an error in reloading a row causes only that row to be lost rather than the entire table contents. Note that the restore might fail altogether if you have rearranged column order. The --column-inserts option is safe against column order changes, though even slower.

--load-via-partition-root

When dumping data for a table partition, make the COPY or INSERT statements target the root of the partitioning hierarchy that contains it, rather than the partition itself. This causes the appropriate partition to be re-determined for each row when the data is loaded. This may be useful when reloading data on a server where rows do not always fall into the same partitions as they did on the original server. That could happen, for example, if the partitioning column is of type text and the two systems have different definitions of the collation used to sort the partitioning column.

It is best not to use parallelism when restoring from an archive made with this option, because pg_restore will not know exactly which partition(s) a given archive data item will load data into. This could result in inefficiency due to lock conflicts between parallel jobs, or perhaps even reload failures due to foreign key constraints being set up before all the relevant data is loaded.

--lock-wait-timeout=timeout

Do not wait forever to acquire shared table locks at the beginning of the dump. Instead fail if unable to lock a table within the specified timeout. The timeout may be specified in any of the formats accepted by SET statement_timeout. (Allowed formats vary depending on the server version you are dumping from, but an integer number of milliseconds is accepted by all versions.)

--no-comments

Do not dump comments.

--no-publications

Do not dump publications.

--no-security-labels

Do not dump security labels.

--no-subscriptions

Do not dump subscriptions.

--no-sync

By default, pg_dump will wait for all files to be written safely to disk. This option causes pg_dump to return without waiting, which is faster, but means that a subsequent operating system crash can leave the dump corrupt. Generally, this option is useful for testing but should not be used when dumping data from production installation.

--no-synchronized-snapshots

This option allows running pg_dump -j against a pre-9.2 server, see the documentation of the -j parameter for more details.

--no-tablespaces

Do not output commands to select tablespaces. With this option, all objects will be created in whichever tablespace is the default during restore.

This option is only meaningful for the plain-text format. For the archive formats, you can specify the option when you call pg_restore.

--no-unlogged-table-data

Do not dump the contents of unlogged tables. This option has no effect on whether or not the table definitions (schema) are dumped; it only suppresses dumping the table data. Data in unlogged tables is always excluded when dumping from a standby server.

--quote-all-identifiers

Force quoting of all identifiers. This option is recommended when dumping a database from a server whose PostgreSQL major version is different from pg_dump's, or when the output is intended to be loaded into a server of a different major version. By default, pg_dump quotes only identifiers that are reserved words in its own major version. This sometimes results in compatibility issues when dealing with servers of other versions that may have slightly different sets of reserved words. Using --quote-all-identifiers prevents such issues, at the price of a harder-to-read dump script.

--section=sectionname

Only dump the named section. The section name can be pre-data, data, or post-data. This option can be specified more than once to select multiple sections. The default is to dump all sections.

The data section contains actual table data, large-object contents, and sequence values. Post-data items include definitions of indexes, triggers, rules, and constraints other than validated check constraints. Pre-data items include all other data definition items.

--serializable-deferrable

This option is not beneficial for a dump which is intended only for disaster recovery. It could be useful for a dump used to load a copy of the database for reporting or other read-only load sharing while the original database continues to be updated. Without it the dump may reflect a state which is not consistent with any serial execution of the transactions eventually committed. For example, if batch processing techniques are used, a batch may show as closed in the dump without all of the items which are in the batch appearing.

This option will make no difference if there are no read-write transactions active when pg_dump is started. If read-write transactions are active, the start of the dump may be delayed for an indeterminate length of time. Once running, performance with or without the switch is the same.

--snapshot=snapshotname

In the case of a parallel dump, the snapshot name defined by this option is used rather than taking a new snapshot.

--strict-names

Require that each schema (-n/--schema) and table (-t/--table) qualifier match at least one schema/table in the database to be dumped. Note that if none of the schema/table qualifiers find matches, pg_dump will generate an error even without --strict-names.

This option has no effect on -N/--exclude-schema, -T/--exclude-table, or --exclude-table-data. An exclude pattern failing to match any objects is not considered an error.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER commands to determine object ownership. This makes the dump more standards-compatible, but depending on the history of the objects in the dump, might not restore properly. Also, a dump using SET SESSION AUTHORIZATION will certainly require superuser privileges to restore correctly, whereas ALTER OWNER requires lesser privileges.

-? --help

Show help about pg_dump command line arguments, and exit.

The following command-line options control the database connection parameters.

-d dbname --dbname=dbname

Specifies the name of the database to connect to. This is equivalent to specifying dbname as the first non-option argument on the command line.

h host --host=host

Specifies the host name of the machine on which the server is running. If the value begins with a slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOSTenvironment variable, if set, else a Unix domain socket connection is attempted.

-p port --port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username --username=username

User name to connect as.

-w --no-password

Never issue a password prompt. If the server requires password authentication and a password is not available by other means such as a .pgpass file, the connection attempt will fail. This option can be useful in batch jobs and scripts where no user is present to enter a password.

-W --password

Force pg_dump to prompt for a password before connecting to a database.

This option is never essential, since pg_dump will automatically prompt for a password if the server demands password authentication. However, pg_dump will waste a connection attempt finding out that the server wants a password. In some cases it is worth typing -W to avoid the extra connection attempt.

--role=rolename

Specifies a role name to be used to create the dump. This option causes pg_dump to issue a SET ROLE rolename command after connecting to the database. It is useful when the authenticated user (specified by -U) lacks privileges needed by pg_dump, but can switch to a role with the required rights. Some installations have a policy against logging in directly as a superuser, and use of this option allows dumps to be made without violating the policy.

Environment

PGDATABASE PGHOST PGOPTIONS PGPORT PGUSER

Default connection parameters.

Diagnostics

The database activity of pg_dump is normally collected by the statistics collector. If this is undesirable, you can set parameter track_counts to false via PGOPTIONS or the ALTER USER command.

Notes

If your database cluster has any local additions to the template1 database, be careful to restore the output of pg_dump into a truly empty database; otherwise you are likely to get errors due to duplicate definitions of the added objects. To make an empty database without any local additions, copy from template0 not template1, for example:

CREATE DATABASE foo WITH TEMPLATE template0;

When a data-only dump is chosen and the option --disable-triggers is used, pg_dump emits commands to disable triggers on user tables before inserting the data, and then commands to re-enable them after the data has been inserted. If the restore is stopped in the middle, the system catalogs might be left in the wrong state.

Because pg_dump is used to transfer data to newer versions of PostgreSQL, the output of pg_dump can be expected to load into PostgreSQL server versions newer than pg_dump's version. pg_dumpcan also dump from PostgreSQL servers older than its own version. (Currently, servers back to version 8.0 are supported.) However, pg_dump cannot dump from PostgreSQL servers newer than its own major version; it will refuse to even try, rather than risk making an invalid dump. Also, it is not guaranteed that pg_dump's output can be loaded into a server of an older major version — not even if the dump was taken from a server of that version. Loading a dump file into an older server may require manual editing of the dump file to remove syntax not understood by the older server. Use of the --quote-all-identifiers option is recommended in cross-version cases, as it can prevent problems arising from varying reserved-word lists in different PostgreSQL versions.

When dumping logical replication subscriptions, pg_dump will generate CREATE SUBSCRIPTION commands that use the NOCONNECT option, so that restoring the subscription does not make remote connections for creating a replication slot or for initial table copy. That way, the dump can be restored without requiring network access to the remote servers. It is then up to the user to reactivate the subscriptions in a suitable way. If the involved hosts have changed, the connection information might have to be changed. It might also be appropriate to truncate the target tables before initiating a new full table copy.

Examples

To dump a database called mydb into a SQL-script file:

$ pg_dump mydb > db.sql

To reload such a script into a (freshly created) database named newdb:

$ psql -d newdb -f db.sql

To dump a database into a custom-format archive file:

$ pg_dump -Fc mydb > db.dump

To dump a database into a directory-format archive:

$ pg_dump -Fd mydb -f dumpdir

To dump a database into a directory-format archive in parallel with 5 worker jobs:

$ pg_dump -Fd mydb -j 5 -f dumpdir

To reload an archive file into a (freshly created) database named newdb:

$ pg_restore -d newdb db.dump

To reload an archive file into the same database it was dumped from, discarding the current contents of that database:

$ pg_restore -d postgres --clean --create db.dump

To dump a single table named mytab:

$ pg_dump -t mytab mydb > db.sql

To dump all tables whose names start with emp in the detroit schema, except for the table named employee_log:

$ pg_dump -t 'detroit.emp*' -T detroit.employee_log mydb > db.sql

To dump all schemas whose names start with east or west and end in gsm, excluding any schemas whose names contain the word test:

$ pg_dump -n 'east*gsm' -n 'west*gsm' -N '*test*' mydb > db.sql

The same, using regular expression notation to consolidate the switches:

$ pg_dump -n '(east|west)*gsm' -N '*test*' mydb > db.sql

To dump all database objects except for tables whose names begin with ts_:

$ pg_dump -T 'ts_*' mydb > db.sql
$ pg_dump -t "\"MixedCaseName\"" mydb > mytab.sql

See Also

pg_dump will open njobs + 1 connections to the database, so make sure your setting is high enough to accommodate all connections.

Dump only schemas matching schema; this selects both the schema itself, and all its contained objects. When this option is not specified, all non-system schemas in the target database will be dumped. Multiple schemas can be selected by writing multiple -n switches. Also, the schema parameter is interpreted as a pattern according to the same rules used by psql's \d commands (see ), so multiple schemas can also be selected by writing wildcard characters in the pattern. When using wildcards, be careful to quote the pattern if needed to prevent the shell from expanding the wildcards; see .

Dump only tables with names matching table. For this purpose, “table” includes views, materialized views, sequences, and foreign tables. Multiple tables can be selected by writing multiple -tswitches. Also, the table parameter is interpreted as a pattern according to the same rules used by psql's \d commands (see ), so multiple tables can also be selected by writing wildcard characters in the pattern. When using wildcards, be careful to quote the pattern if needed to prevent the shell from expanding the wildcards; see .

This option is relevant only when dumping the contents of a table which has row security. By default, pg_dump will set to off, to ensure that all data is dumped from the table. If the user does not have sufficient privileges to bypass row security, then an error is thrown. This parameter instructs pg_dump to set to on instead, allowing the user to dump the parts of the contents of the table that they have access to.

Use a serializable transaction for the dump, to ensure that the snapshot used is consistent with later database states; but do this by waiting for a point in the transaction stream at which no anomalies can be present, so that there isn't a risk of the dump failing or causing other transactions to roll back with a serialization_failure. See for more information about transaction isolation and concurrency control.

Use the specified synchronized snapshot when making a dump of the database (see for more details).

This option is useful when needing to synchronize the dump with a logical replication slot (see ) or with a concurrent session.

If this parameter contains an = sign or starts with a valid URI prefix (postgresql:// or postgres://), it is treated as a conninfo string. See for more information.-

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq (see ).

pg_dump internally executes SELECT statements. If you have problems running pg_dump, make sure you are able to select information from the database using, for example, . Also, any default connection settings and environment variables used by the libpq front-end library will apply.

The dump file produced by pg_dump does not contain the statistics used by the optimizer to make query planning decisions. Therefore, it is wise to run ANALYZE after restoring from a dump file to ensure optimal performance; see and for more information.

To specify an upper-case or mixed-case name in -t and related switches, you need to double-quote the name; else it will be folded to lower case (see ). But double quotes are special to the shell, so in turn they must be quoted. Thus, to dump a single table with a mixed-case name, you need something like

, ,

pg_dumpall
psql
pg_restore
max_connections
Patterns
Examples
Patterns
Examples
row_security
row_security
Chapter 13
Table 9.82
Chapter 49
Section 34.1
Section 34.14
psql
Section 24.1.3
Section 24.1.6
Patterns
pg_dumpall
pg_restore
psql