PostgreSQL 正體中文使用手冊
PostgreSQL.TW官方使用手冊小島故事加入社團
11
11
  • 簡介
  • 前言
    • 1. 什麼是PostgreSQL?
    • 2. PostgreSQL沿革
    • 3. 慣例
    • 4. 其他參考資訊
    • 5. 問題回報指南
  • I. 新手教學
    • 1. 入門指南
      • 1.1. 安裝
      • 1.2. 基礎架構
      • 1.3. 建立一個資料庫
      • 1.4. 存取一個資料庫
    • 2. SQL查詢語言
      • 2.1. 簡介
      • 2.2. 概念
      • 2.3. 創建一個新的資料表
      • 2.4. 資料列是資料表的組成單位
      • 2.5. 資料表的查詢
      • 2.6. 交叉查詢
      • 2.7. 彙總查詢
      • 2.8. 更新資料
      • 2.9. 刪除資料
    • 3. 先進功能
      • 3.1. 簡介
      • 3.2. 檢視表(View)
      • 3.3. 外部索引鍵
      • 3.4. 交易安全
      • 3.5. 窗函數
      • 3.6. 繼承
      • 3.7. 結論
  • II. SQL查詢語言
    • 4. SQL語法
      • 4.1. 語法結構
      • 4.2. 參數表示式
      • 4.3. 函數呼叫
    • 5. 定義資料結構
      • 5.1. 認識資料表
      • 5.2. 預設值
      • 5.3. 限制條件
      • 5.4. 系統欄位
      • 5.5. 表格變更
      • 5.6. 權限
      • 5.7. 資料列安全原則
      • 5.8. Schemas
      • 5.9. 繼承
      • 5.10. 分割資料表
      • 5.11. 外部資料
      • 5.12. 其他資料庫物件
      • 5.13. 相依性追蹤
    • 6. 資料處理
      • 6.1. 新增資料
      • 6.2. 更新資料
      • 6.3. 刪除資料
      • 6.4. 修改並回傳資料
    • 7. 資料查詢
      • 7.1. 概觀
      • 7.2. 資料表表示式
      • 7.3. 取得資料列表
      • 7.4. 合併查詢結果
      • 7.5. 資料排序
      • 7.6. 指定資料範圍
      • 7.7. 列舉資料
      • 7.8. 遞迴查詢(Common Table Expressions)
    • 8. 資料型別
      • 8.1. 數字型別
      • 8.2. 貨幣型別
      • 8.3. 字串型別
      • 8.4. 位元組型別(bytea)
      • 8.5. 日期時間型別
      • 8.6. 布林型別
      • 8.7. 列舉型別
      • 8.8. 地理資訊型別
      • 8.9. 網路資訊型別
      • 8.10. 位元字串型別
      • 8.11. 全文檢索型別
      • 8.12. UUID型別
      • 8.13. XML型別
      • 8.14. JSON型別
      • 8.15. 陣列
      • 8.16. 複合型別
      • 8.17. 範圍型別
      • 8.18. 指標型別
      • 8.19. pg_lsn型別
      • 8.20. 概念型別
    • 9. 函式及運算子
      • 9.1. 邏輯運算子
      • 9.2. 比較函式及運算子
      • 9.3. 數學函式及運算子
      • 9.4. 字串函式及運算子
      • 9.5. 位元字串函式及運算子
      • 9.6. 二元字串函式及運算子
      • 9.7. 特徵比對
      • 9.8. 型別轉換函式
      • 9.9 日期時間函式及運算子
      • 9.10. 列舉型別函式
      • 9.11. 地理資訊函式及運算子
      • 9.12. 網路位址函式及運算子
      • 9.13. 文字檢索函式及運算子
      • 9.14. XML函式
      • 9.15. JSON函式及運算子
      • 9.16. 序列函式
      • 9.17. 條件表示式
      • 9.18. 陣列函式及運算子
      • 9.19. 範圍函式及運算子
      • 9.20. 彙總函數
      • 9.21. Window函式
      • 9.22. 子查詢
      • 9.23. 資料列與陣列的比較運算
      • 9.24. 集合回傳函式
      • 9.25. 系統資訊函數
      • 9.26. 系統管理函式
      • 9.27. 觸發函式
      • 9.28. 事件觸發函式
    • 10. 型別轉換
      • 10.1. 概觀
      • 10.2. 運算子
      • 10.3. 函式
      • 10.4. 資料儲存轉換規則
      • 10.5. UNION、CASE 等相關結構
      • 10.6. SELECT輸出規則
    • 11. 索引(Index)
      • 11.1. 簡介
      • 11.2. 索引型別
      • 11.3. 多欄位索引
      • 11.4. 索引與ORDER BY
      • 11.5. 善用多個索引
      • 11.6. 唯一值索引
      • 11.7. 表示式索引
      • 11.8. 部份索引(partial index)
      • 11.9. 運算子物件及家族
      • 11.10. 索引與排序規則
      • 11.11. 索引限定查詢(Index-only scan)
      • 11.12. 檢查索引運用
    • 12. 全文檢索
      • 12.1. 簡介
      • 12.2. 查詢與索引
      • 12.3. 細部控制
      • 12.4. 延伸功能
      • 12.5. 斷詞
      • 12.6. 字典
      • 12.7. 組態範例
      • 12.8. 測試與除錯
      • 12.9. GIN及GiST索引型別
      • 12.10. psql支援
      • 12.11. 功能限制
    • 13. 一致性管理(MVCC)
      • 13.1. 簡介
      • 13.2. 交易隔離
      • 13.3. 鎖定模式
      • 13.4. 在應用端檢視資料一致性
      • 13.5. 特別注意
      • 13.6. 鎖定與索引
    • 14. 效能技巧
      • 14.1. 善用EXPLAIN
      • 14.2. 統計資訊
      • 14.3. 使用確切的JOIN方式
      • 14.4. 快速建立資料庫內容
      • 14.5. 彈性設定
    • 15. 平行查詢
      • 15.1. 如何運作?
      • 15.2. 啓用時機?
      • 15.3. 平行查詢計畫
      • 15.4. 平行查詢的安全性
  • III. 系統管理
    • 16. 用原始碼安裝
      • 16.1. Short Version
      • 16.2. Requirements
      • 16.3. Getting The Source
      • 16.4. 安裝流程
      • 16.5. Post-Installation Setup
      • 16.6. Supported Platforms
      • 16.7. 平台相關的注意事項
    • 17. 用原始碼在 Windows 上安裝
      • 17.1. Building with Visual C++ or the Microsoft Windows SDK
    • 18. 服務配置與維運
      • 18.1. PostgreSQL 使用者帳號
      • 18.2. Creating a Database Cluster
      • 18.3. Starting the Database Server
      • 18.4. 核心資源管理
      • 18.5. Shutting Down the Server
      • 18.6. Upgrading a PostgreSQL Cluster
      • 18.7. Preventing Server Spoofing
      • 18.8. Encryption Options
      • 18.9. Secure TCP/IP Connections with SSL
      • 18.10. Secure TCP/IP Connections with SSH Tunnels
      • 18.11. 在 Windows 註冊事件日誌
    • 19. 服務組態設定
      • 19.1. Setting Parameters
      • 19.2. File Locations
      • 19.3. 連線與認證
      • 19.4. 資源配置
      • 19.5. Write Ahead Log
      • 19.6. 複寫(Replication)
      • 19.7. 查詢規畫
      • 19.8. 錯誤回報與日誌記錄
      • 19.9. Run-time Statistics
      • 19.10. 自動資料庫清理
      • 19.11. 用戶端連線預設參數
      • 19.12. 交易鎖定管理
      • 19.13. 版本與平台的相容性
      • 19.14. Error Handling
      • 19.15. 預先配置的參數
      • 19.16. Customized Options
      • 19.17. Developer Options
      • 19.18. Short Options
    • 20. 使用者認證
      • 20.1. 設定檔:pg_hba.conf
      • 20.2. User Name Maps
      • 20.3. Authentication Methods
      • 20.4. Authentication Problems
    • 21. 資料庫角色
      • 21.1. Database Roles
      • 21.2. Role Attributes
      • 21.3. Role Membership
      • 21.4. 移除角色
      • 21.5. Default Roles
      • 21.6. Function Security
    • 22. Managing Databases
      • 22.1. Overview
      • 22.2. Creating a Database
      • 22.3. 樣版資料庫
      • 22.4. Database Configuration
      • 22.5. Destroying a Database
      • 22.6. Tablespaces
    • 23. 語系
      • 23.1. 語系支援
      • 23.2. Collation Support
      • 23.3. 字元集支援
    • 24. 例行性資料庫維護工作
      • 24.1. 例行性資料清理
      • 24.2. 定期重建索引
      • 24.3. Log File Maintenance
    • 25. 備份及還原
      • 25.1. SQL Dump
      • 25.2. File System Level Backup
      • 25.3. Continuous Archiving and Point-in-Time Recovery (PITR)
    • 26. High Availability, Load Balancing, and Replication
      • 26.1. Comparison of Different Solutions
      • 26.2. 日誌轉送備用伺服器 Log-Shipping Standby Servers
      • 26.3. Failover
      • 26.4. Alternative Method for Log Shipping
      • 26.5. Hot Standby
    • 27. Recovery Configuration
      • 27.1. Archive Recovery Settings
      • 27.2. Recovery Target Settings
      • 27.3. Standby Server Settings
    • 28. 監控資料庫活動
      • 28.1. Standard Unix Tools
      • 28.2. 統計資訊收集器
      • 28.3. Viewing Locks
      • 28.4. Progress Reporting
      • 28.5. Dynamic Tracing
    • 29. Monitoring Disk Usage
      • 29.1. Determining Disk Usage
      • 29.2. Disk Full Failure
    • 30. 高可靠度及預寫日誌
      • 30.1. Reliability
      • 30.2. Write-Ahead Logging (WAL)
      • 30.3. Asynchronous Commit
      • 30.4. WAL Configuration
      • 30.5. WAL Internals
    • 31. 邏輯複寫(Logical Replication)
      • 31.1. 發佈(Publication)
      • 31.2. 訂閱(Subscription)
      • 31.3. 衝突處理
      • 31.4. 限制
      • 31.5. 架構
      • 31.6. 監控
      • 31.7. 安全性
      • 31.8. 系統設定
      • 31.9. 快速設定
    • 32. Just-in-Time Compilation (JIT)
      • 32.1. What is JIT compilation?
      • 32.2. When to JIT?
      • 32.3. Configuration
      • 32.4. Extensibility
    • 33. 迴歸測試
      • 33.1. Running the Tests
      • 33.2. Test Evaluation
      • 33.3. Variant Comparison Files
      • 33.4. TAP Tests
      • 33.5. Test Coverage Examination
  • IV. 用戶端介面
    • 34. libpq - C Library
      • 34.1. 資料庫連線控制函數
      • 34.2. 連線狀態函數
      • 34.3. Command Execution Functions
      • 34.4. Asynchronous Command Processing
      • 34.5. Retrieving Query Results Row-By-Row
      • 34.6. Canceling Queries in Progress
      • 34.7. The Fast-Path Interface
      • 34.8. Asynchronous Notification
      • 34.9. Functions Associated with the COPY Command
      • 34.10. Control Functions
      • 34.11. Miscellaneous Functions
      • 34.12. Notice Processing
      • 34.13. Event System
      • 34.14. 環境變數
      • 34.15. 密碼檔
      • 34.16. The Connection Service File
      • 34.17. LDAP Lookup of Connection Parameters
      • 34.18. SSL Support
      • 34.19. Behavior in Threaded Programs
      • 34.20. Building libpq Programs
      • 34.21. Example Programs
    • 35. Large Objects
      • 35.1. Introduction
      • 35.2. Implementation Features
      • 35.3. Client Interfaces
      • 35.4. Server-side Functions
      • 35.5. Example Program
    • 36. ECPG - Embedded SQL in C
      • 36.1. The Concept
      • 36.2. Managing Database Connections
      • 36.3. Running SQL Commands
      • 36.4. Using Host Variables
      • 36.5. Dynamic SQL
      • 36.6. pgtypes Library
      • 36.7. Using Descriptor Areas
      • 36.8. Error Handling
      • 36.9. Preprocessor Directives
      • 36.10. Processing Embedded SQL Programs
      • 36.11. Library Functions
      • 36.12. Large Objects
      • 36.13. C++ Applications
      • 36.14. Embedded SQL Commands
      • 36.15. Informix Compatibility Mode
      • 36.16. Internals
    • 37. The Information Schema
      • 37.1. The Schema
      • 37.2. Data Types
      • 37.3. information_schema_catalog_name
      • 37.4. administrable_role_authorizations
      • 37.5. applicable_roles
      • 37.6. attributes
      • 37.7. character_sets
      • 37.8. check_constraint_routine_usage
      • 37.9. check_constraints
      • 37.10. collations
      • 37.11. collation_character_set_applicability
      • 37.12. column_domain_usage
      • 37.13. column_options
      • 37.14. column_privileges
      • 37.15. column_udt_usage
      • 37.16. columns
      • 37.17. constraint_column_usage
      • 37.18. constraint_table_usage
      • 37.19. data_type_privileges
      • 37.20. domain_constraints
      • 37.21. domain_udt_usage
      • 37.22. domains
      • 37.23. element_types
      • 37.24. enabled_roles
      • 37.25. foreign_data_wrapper_options
      • 37.26. foreign_data_wrappers
      • 37.27. foreign_server_options
      • 37.28. foreign_servers
      • 37.29. foreign_table_options
      • 37.30. foreign_tables
      • 37.31. key_column_usage
      • 37.32. parameters
      • 37.33. referential_constraints
      • 37.34. role_column_grants
      • 37.35. role_routine_grants
      • 37.36. role_table_grants
      • 37.37. role_udt_grants
      • 37.38. role_usage_grants
      • 37.39. routine_privileges
      • 37.40. routines
      • 37.41. schemata
      • 37.42. sequences
      • 37.43. sql_features
      • 37.44. sql_implementation_info
      • 37.45. sql_languages
      • 37.46. sql_packages
      • 37.47. sql_parts
      • 37.48. sql_sizing
      • 37.49. sql_sizing_profiles
      • 37.50. table_constraints
      • 37.51. table_privileges
      • 37.52. tables
      • 37.53. transforms
      • 37.54. triggered_update_columns
      • 37.55. triggers
      • 37.56. udt_privileges
      • 37.57. usage_privileges
      • 37.58. user_defined_types
      • 37.59. user_mapping_options
      • 37.60. user_mappings
      • 37.61. view_column_usage
      • 37.62. view_routine_usage
      • 37.63. view_table_usage
      • 37.64. views
  • V. 資料庫程式設計
    • 38. SQL 延伸功能
      • 38.1. How Extensibility Works
      • 38.2. The PostgreSQL Type System
      • 38.3. 使用者自訂函數
      • 38.4. User-defined Procedures
      • 38.5. Query Language (SQL) Functions
      • 38.6. Function Overloading
      • 38.7. 函數易變性類別
      • 38.8. Procedural Language Functions
      • 38.9. Internal Functions
      • 38.10. C-Language Functions
      • 38.11. User-defined Aggregates
      • 38.12. User-defined Types
      • 38.13. User-defined Operators
      • 38.14. Operator Optimization Information
      • 38.15. Interfacing Extensions To Indexes
      • 38.16. Packaging Related Objects into an Extension
      • 38.17. Extension Building Infrastructure
    • 39. Triggers
    • 40. Event Triggers
    • 41. 規則系統
      • 41.1. The Query Tree
      • 41.2. Views and the Rule System
      • 41.3. Materialized Views
      • 41.4. Rules on INSERT, UPDATE, and DELETE
      • 41.5. 規則及權限
      • 41.6. Rules and Command Status
      • 41.7. Rules Versus Triggers
    • 42. Procedural Languages(程序語言)
      • 42.1. Installing Procedural Languages
    • 43. PL/pgSQL - SQL Procedural Language
      • 43.5. 基本語法
    • 44. PL/Tcl - Tcl Procedural Language
    • 45. PL/Perl - Perl Procedural Language
    • 46. PL/Python - Python Procedural Language
    • 47. Server Programming Interface
    • 48. Background Worker Processes
    • 49. Logical Decoding
    • 50. Replication Progress Tracking
  • VI. 參考資訊
    • I. SQL 指令
      • ALTER DATABASE
      • ALTER DEFAULT PRIVILEGES
      • ALTER EXTENSION
      • ALTER FUNCTION
      • ALTER INDEX
      • ALTER LANGUAGE
      • ALTER MATERIALIZED VIEW
      • ALTER POLICY
      • ALTER PUBLICATION
      • ALTER ROLE
      • ALTER RULE
      • ALTER SCHEMA
      • ALTER SEQUENCE
      • ALTER STATISTICS
      • ALTER SUBSCRIPTION
      • ALTER TABLE
      • ALTER TABLESPACE
      • ALTER TRIGGER
      • ALTER TYPE
      • ALTER VIEW
      • ANALYZE
      • CLUSTER
      • COMMENT
      • COPY
      • CREATE CAST
      • CREATE DATABASE
      • CREATE EXTENSION
      • CREATE FOREIGN TABLE
      • CREATE FOREIGN DATA WRAPPER
      • CREATE FUNCTION
      • CREATE INDEX
      • CREATE LANGUAGE
      • CREATE MATERIALIZED VIEW
      • CREATE DOMAIN
      • CREATE POLICY
      • CREATE PROCEDURE
      • CREATE PUBLICATION
      • CREATE ROLE
      • CREATE RULE
      • CREATE SCHEMA
      • CREATE SEQUENCE
      • CREATE SERVER
      • CREATE STATISTICS
      • CREATE SUBSCRIPTION
      • CREATE TABLE
      • CREATE TABLE AS
      • CREATE TABLESPACE
      • CREATE TRANSFORM
      • CREATE TRIGGER
      • CREATE TYPE
      • CREATE USER
      • CREATE USER MAPPING
      • CREATE VIEW
      • DELETE
      • DO
      • DROP DATABASE
      • DROP EXTENSION
      • DROP FUNCTION
      • DROP INDEX
      • DROP LANGUAGE
      • DROP MATERIALIZED VIEW
      • DROP OWNED
      • DROP POLICY
      • DROP ROLE
      • DROP RULE
      • DROP SCHEMA
      • DROP SEQUENCE
      • DROP STATISTICS
      • DROP SUBSCRIPTION
      • DROP TABLE
      • DROP TABLESPACE
      • DROP TRANSFORM
      • DROP TRIGGER
      • DROP TYPE
      • DROP USER
      • DROP VIEW
      • EXECUTE
      • EXPLAIN
      • GRANT
      • IMPORT FOREIGN SCHEMA
      • INSERT
      • LISTEN
      • LOAD
      • NOTIFY
      • PREPARE TRANSACTION
      • REASSIGN OWNED
      • REFRESH MATERIALIZED VIEW
      • REINDEX
      • RESET
      • REVOKE
      • SELECT
      • SELECT INTO
      • SET
      • SET CONSTRAINTS
      • SET ROLE
      • SET SESSION AUTHORIZATION
      • SET TRANSACTION
      • SHOW
      • TRUNCATE
      • UNLISTEN
      • UPDATE
      • VACUUM
      • VALUES
    • II. PostgreSQL 用戶端工具
      • createdb
      • createuser
      • dropdb
      • dropuser
      • pgbench
      • pg_dump
      • psql
      • vacuumdb
    • III. PostgreSQL 伺服器應用程式
      • pg_test_timing
      • postgres
  • VII. 資料庫進階
    • 52. 系統目錄
      • 52.3. pg_am
      • 52.7. pg_attribute
      • 52.8. pg_authid
      • 52.9. pg_auth_members
      • 52.11 pg_class
      • 52.12. pg_collation
      • 52.13. pg_constraint
      • 52.15 pg_database
      • 52.26 pg_index
      • 52.29. pg_language
      • 52.32. pg_namespace
      • 52.33. pg_opclass
      • 52.38. pg_policy
      • 52.39. pg_proc
      • 52.44. pg_rewrite
      • 52.50. pg_statistic
      • 52.51. pg_statistic_ext
      • 52.54. pg_tablespace
      • 52.56. pg_trigger
      • 52.62. pg_type
      • 52.79. pg_replication_origin_status
      • 52.81 pg_roles
      • 52.85. pg_settings
      • 52.87. pg_stats
    • 53. Frontend/Backend Protocol
      • 53.1. Overview
      • 53.2. Message Flow
      • 53.3. SASL Authentication
      • 53.4. Streaming Replication Protocol
      • 53.5. Logical Streaming Replication Protocol
      • 53.6. Message Data Types
      • 53.7. Message Formats
      • 53.8. Error and Notice Message Fields
      • 53.9. Logical Replication Message Formats
      • 53.10. Summary of Changes since Protocol 2.0
    • 54. PostgreSQL 程式撰寫慣例
      • 54.1. Formatting
      • 54.2. Reporting Errors Within the Server
      • 54.3. Error Message Style Guide
      • 54.4. Miscellaneous Coding Conventions
    • 56. Writing A Procedural Language Handler
    • 64. GiST Indexes
      • 64.1. Introduction
      • 64.2. Built-in Operator Classes
      • 64.3. Extensibility
      • 64.4. Implementation
      • 64.5. Examples
    • 65. SP-GiST Indexes
      • 65.1. Introduction
      • 65.2. Built-in Operator Classes
      • 65.3. Extensibility
      • 65.4. Implementation
      • 65.5. Examples
    • 66. GIN 索引
      • 66.1. 簡介
      • 66.2. 內建運算子類
      • 66.3. Extensibility
      • 66.4. Implementation
      • 66.5. GIN Tips and Tricks
      • 66.6. Limitations
      • 66.7. Examples
    • 67. BRIN Indexes
      • 67.1. Introduction
      • 67.2. Built-in Operator Classes
      • 67.3. Extensibility
    • 68. 資料庫實體儲存格式
      • 68.2. TOAST
      • 68.4 可視性映射表(Visibility Map)
    • 70. How the Planner Uses Statistics
      • 70.2. Multivariate Statistics Examples
  • VIII. 附錄
    • A. PostgreSQL錯誤代碼
    • B. 日期時間格式支援
      • B.1. 日期時間解譯流程
      • B.2. 日期時間慣用字
      • B.3. 日期時間設定檔
      • B.4. 日期時間的沿革
    • C. SQL 關鍵字
    • D. SQL 相容性
    • E. 版本資訊
    • F. 延伸支援模組
      • F.4. auto_explain
      • F.11. dblink
        • dblink
      • F.33. pg_visibility
    • G. Additional Supplied Programs
      • G.1. Client Applications
        • oid2name
        • vacuumlo
      • G.2. Server Applications
        • pg_standby
    • H. 外部專案
      • H.1. 用戶端介面
      • H.2. Administration Tools
      • H.3. Procedural Languages
      • H.4. Extensions
    • I. The Source Code Repository
      • I.1. Getting The Source via Git
    • J. 文件取得
    • K. 縮寫字
  • 參考書目
Powered by GitBook
On this page

Was this helpful?

Edit on Git
Export as PDF
  1. V. 資料庫程式設計
  2. 41. 規則系統

41.7. Rules Versus Triggers

Many things that can be done using triggers can also be implemented using the PostgreSQL rule system. One of the things that cannot be implemented by rules are some kinds of constraints, especially foreign keys. It is possible to place a qualified rule that rewrites a command to NOTHING if the value of a column does not appear in another table. But then the data is silently thrown away and that's not a good idea. If checks for valid values are required, and in the case of an invalid value an error message should be generated, it must be done by a trigger.

In this chapter, we focused on using rules to update views. All of the update rule examples in this chapter can also be implemented using INSTEAD OF triggers on the views. Writing such triggers is often easier than writing rules, particularly if complex logic is required to perform the update.

For the things that can be implemented by both, which is best depends on the usage of the database. A trigger is fired once for each affected row. A rule modifies the query or generates an additional query. So if many rows are affected in one statement, a rule issuing one extra command is likely to be faster than a trigger that is called for every single row and must re-determine what to do many times. However, the trigger approach is conceptually far simpler than the rule approach, and is easier for novices to get right.

Here we show an example of how the choice of rules versus triggers plays out in one situation. There are two tables:

CREATE TABLE computer (
    hostname        text,    -- indexed
    manufacturer    text     -- indexed
);

CREATE TABLE software (
    software        text,    -- indexed
    hostname        text     -- indexed
);

Both tables have many thousands of rows and the indexes on hostname are unique. The rule or trigger should implement a constraint that deletes rows from software that reference a deleted computer. The trigger would use this command:

DELETE FROM software WHERE hostname = $1;

Since the trigger is called for each individual row deleted from computer, it can prepare and save the plan for this command and pass the hostname value in the parameter. The rule would be written as:

CREATE RULE computer_del AS ON DELETE TO computer
    DO DELETE FROM software WHERE hostname = OLD.hostname;

Now we look at different types of deletes. In the case of a:

DELETE FROM computer WHERE hostname = 'mypc.local.net';

the table computer is scanned by index (fast), and the command issued by the trigger would also use an index scan (also fast). The extra command from the rule would be:

DELETE FROM software WHERE computer.hostname = 'mypc.local.net'
                       AND software.hostname = computer.hostname;

Since there are appropriate indexes set up, the planner will create a plan of

Nestloop
  ->  Index Scan using comp_hostidx on computer
  ->  Index Scan using soft_hostidx on software

So there would be not that much difference in speed between the trigger and the rule implementation.

With the next delete we want to get rid of all the 2000 computers where the hostname starts with old. There are two possible commands to do that. One is:

DELETE FROM computer WHERE hostname >= 'old'
                       AND hostname <  'ole'

The command added by the rule will be:

DELETE FROM software WHERE computer.hostname >= 'old' AND computer.hostname < 'ole'
                       AND software.hostname = computer.hostname;

with the plan

Hash Join
  ->  Seq Scan on software
  ->  Hash
    ->  Index Scan using comp_hostidx on computer

The other possible command is:

DELETE FROM computer WHERE hostname ~ '^old';

which results in the following executing plan for the command added by the rule:

Nestloop
  ->  Index Scan using comp_hostidx on computer
  ->  Index Scan using soft_hostidx on software

This shows, that the planner does not realize that the qualification for hostname in computer could also be used for an index scan on software when there are multiple qualification expressions combined with AND, which is what it does in the regular-expression version of the command. The trigger will get invoked once for each of the 2000 old computers that have to be deleted, and that will result in one index scan over computer and 2000 index scans over software. The rule implementation will do it with two commands that use indexes. And it depends on the overall size of the table software whether the rule will still be faster in the sequential scan situation. 2000 command executions from the trigger over the SPI manager take some time, even if all the index blocks will soon be in the cache.

The last command we look at is:

DELETE FROM computer WHERE manufacturer = 'bim';

Again this could result in many rows to be deleted from computer. So the trigger will again run many commands through the executor. The command generated by the rule will be:

DELETE FROM software WHERE computer.manufacturer = 'bim'
                       AND software.hostname = computer.hostname;

The plan for that command will again be the nested loop over two index scans, only using a different index on computer:

Nestloop
  ->  Index Scan using comp_manufidx on computer
  ->  Index Scan using soft_hostidx on software

In any of these cases, the extra commands from the rule system will be more or less independent from the number of affected rows in a command.

The summary is, rules will only be significantly slower than triggers if their actions result in large and badly qualified joins, a situation where the planner fails.

Previous41.6. Rules and Command StatusNext42. Procedural Languages(程序語言)

Last updated 6 years ago

Was this helpful?