PostgreSQL 正體中文使用手冊
PostgreSQL.TW官方使用手冊小島故事加入社團
14
14
  • 簡介
  • 前言
    • 1. 什麼是 PostgreSQL?
    • 2. PostgreSQL 沿革
    • 3. 慣例
    • 4. 其他參考資訊
    • 5. 問題回報指南
  • I. 新手教學
    • 1. 入門指南
      • 1.1. 安裝
      • 1.2. 基礎架構
      • 1.3. 建立一個資料庫
      • 1.4. 存取一個資料庫
    • 2. SQL 查詢語言
      • 2.1. 簡介
      • 2.2. 概念
      • 2.3. 創建一個新的資料表
      • 2.4. 資料列是資料表的組成單位
      • 2.5. 資料表的查詢
      • 2.6. 交叉查詢
      • 2.7. 彙總查詢
      • 2.8. 更新資料
      • 2.9. 刪除資料
    • 3. 先進功能
      • 3.1. 簡介
      • 3.2. 檢視表(View)
      • 3.3. 外部索引鍵
      • 3.4. 交易安全
      • 3.5. 窗函數
      • 3.6. 繼承
      • 3.7. 結論
  • II. SQL 查詢語言
    • 4. SQL 語法
      • 4.1. 語法結構
      • 4.2. 參數表示式
      • 4.3. 函數呼叫
    • 5. 定義資料結構
      • 5.1. 認識資料表
      • 5.2. 預設值
      • 5.3. Generated Columns
      • 5.4. 限制條件
      • 5.5. 系統欄位
      • 5.6. 表格變更
      • 5.7. 權限
      • 5.8. 資料列安全原則
      • 5.9. Schemas
      • 5.10. 繼承
      • 5.11. 分割資料表
      • 5.12. 外部資料
      • 5.13. 其他資料庫物件
      • 5.14. 相依性追蹤
    • 6. 資料處理
      • 6.1. 新增資料
      • 6.2. 更新資料
      • 6.3. 刪除資料
      • 6.4. 修改並回傳資料
    • 7. 資料查詢
      • 7.1. 概觀
      • 7.2. 資料表表示式
      • 7.3. 取得資料列表
      • 7.4. 合併查詢結果
      • 7.5. 資料排序
      • 7.6. LIMIT 和 OFFSET
      • 7.7. VALUES 列舉資料
      • 7.8. WITH Querys(Common Table Expressions)
    • 8. 資料型別
      • 8.1. 數字型別
      • 8.2. 貨幣型別
      • 8.3. 字串型別
      • 8.4. 位元組型別(bytea)
      • 8.5. 日期時間型別
      • 8.6. 布林型別
      • 8.7. 列舉型別
      • 8.8. 地理資訊型別
      • 8.9. 網路資訊型別
      • 8.10. 位元字串型別
      • 8.11. 全文檢索型別
      • 8.12. UUID 型別
      • 8.13. XML 型別
      • 8.14. JSON 型別
      • 8.15. 陣列
      • 8.16. 複合型別
      • 8.17. 範圍型別
      • 8.18. Domain Types
      • 8.19. 物件指標型別
      • 8.20. pg_lsn 型別
      • 8.21. 概念型別
    • 9. 函式及運算子
      • 9.1. 邏輯運算子
      • 9.2. 比較函式及運算子
      • 9.3. 數學函式及運算子
      • 9.4. 字串函式及運算子
      • 9.5. 位元字串函式及運算子
      • 9.6. 二元字串函式及運算子
      • 9.7. 特徵比對
      • 9.8. 型別轉換函式
      • 9.9 日期時間函式及運算子
      • 9.10. 列舉型別函式
      • 9.11. 地理資訊函式及運算子
      • 9.12. 網路位址函式及運算子
      • 9.13. 文字檢索函式及運算子
      • 9.14. UUID Functions
      • 9.15. XML 函式
      • 9.16. JSON 函式及運算子
      • 9.17. 序列函式
      • 9.18. 條件表示式
      • 9.19. 陣列函式及運算子
      • 9.20. 範圍函式及運算子
      • 9.21. 彙總函數
      • 9.22. Window 函式
      • 9.23. 子查詢
      • 9.24. 資料列與陣列的比較運算
      • 9.25. 集合回傳函式
      • 9.26. 系統資訊函數
      • 9.27. 系統管理函式
      • 9.28. 觸發函式
      • 9.29. 事件觸發函式
      • 9.30. Statistics Information Functions
    • 10. 型別轉換
      • 10.1. 概觀
      • 10.2. 運算子
      • 10.3. 函式
      • 10.4. 資料儲存轉換規則
      • 10.5. UNION、CASE 等相關結構
      • 10.6. SELECT 輸出規則
    • 11. 索引(Index)
      • 11.1. 簡介
      • 11.2. 索引型別
      • 11.3. 多欄位索引
      • 11.4. 索引與 ORDER BY
      • 11.5. 善用多個索引
      • 11.6. 唯一值索引
      • 11.7. 表示式索引
      • 11.8. 部份索引(partial index)
      • 11.9. Index-Only Scans and Covering Indexes
      • 11.10. 運算子物件及家族
      • 11.11. 索引與排序規則
      • 11.12. 檢查索引運用
    • 12. 全文檢索
      • 12.1. 簡介
      • 12.2. 查詢與索引
      • 12.3. 細部控制
      • 12.4. 延伸功能
      • 12.5. 斷詞
      • 12.6. 字典
      • 12.7. 組態範例
      • 12.8. 測試與除錯
      • 12.9. GIN 及 GiST 索引型別
      • 12.10. psql支援
      • 12.11. 功能限制
    • 13. 一致性管理(MVCC)
      • 13.1. 簡介
      • 13.2. 交易隔離
      • 13.3. 鎖定模式
      • 13.4. 在應用端檢視資料一致性
      • 13.5. 特別注意
      • 13.6. 鎖定與索引
    • 14. 效能技巧
      • 14.1. 善用 EXPLAIN
      • 14.2. 統計資訊
      • 14.3. 使用確切的 JOIN 方式
      • 14.4. 快速建立資料庫內容
      • 14.5. 風險性彈性設定
    • 15. 平行查詢
      • 15.1. 如何運作?
      • 15.2. 啓用時機?
      • 15.3. 平行查詢計畫
      • 15.4. 平行查詢的安全性
  • III. 系統管理
    • 16. Installation from Binaries
    • 17. 用原始碼安裝
      • 16.1. Short Version
      • 16.2. Requirements
      • 16.3. Getting The Source
      • 16.4. 安裝流程
      • 16.5. Post-Installation Setup
      • 16.6. Supported Platforms
      • 16.7. 平台相關的注意事項
    • 18. 用原始碼在 Windows 上安裝
      • 17.1. Building with Visual C++ or the Microsoft Windows SDK
    • 19. 服務配置與維運
      • 18.1. PostgreSQL 使用者帳號
      • 18.2. Creating a Database Cluster
      • 18.3. Starting the Database Server
      • 18.4. 核心資源管理
      • 18.5. Shutting Down the Server
      • 18.6. Upgrading a PostgreSQL Cluster
      • 18.7. Preventing Server Spoofing
      • 18.8. Encryption Options
      • 18.9. Secure TCP/IP Connections with SSL
      • 18.10. Secure TCP/IP Connections with GSSAPI Encryption
      • 18.11. Secure TCP/IP Connections with SSH Tunnels
      • 18.12. 在 Windows 註冊事件日誌
    • 20. 服務組態設定
      • 19.1. Setting Parameters
      • 19.2. File Locations
      • 19.3. 連線與認證
      • 19.4. 資源配置
      • 19.5. Write Ahead Log
      • 19.6. 複寫(Replication)
      • 19.7. 查詢規畫
      • 19.8. 錯誤回報與日誌記錄
      • 19.9. 執行階段統計資訊
      • 19.10. 自動資料庫清理
      • 20.11. 用戶端連線預設參數
      • 19.12. 交易鎖定管理
      • 19.13. 版本與平台的相容性
      • 19.14. Error Handling
      • 19.15. 預先配置的參數
      • 19.16. Customized Options
      • 19.17. Developer Options
      • 19.18. Short Options
    • 21. 使用者認證
      • 20.1. 設定檔:pg_hba.conf
      • 20.2. User Name Maps
      • 20.3. Authentication Methods
      • 20.4. Trust Authentication
      • 20.5. Password Authentication
      • 20.6. GSSAPI Authentication
      • 20.7. SSPI Authentication
      • 20.8. Ident Authentication
      • 20.9. Peer Authentication
      • 20.10. LDAP Authentication
      • 20.11. RADIUS Authentication
      • 20.12. Certificate Authentication
      • 20.13. PAM Authentication
    • 22. 資料庫角色
      • 22.1. Database Roles
      • 22.2. Role Attributes
      • 22.3. Role Membership
      • 22.4. 移除角色
      • 22.5. Default Roles
      • 22.6. Function Security
    • 23. Managing Databases
      • 22.1. Overview
      • 22.2. Creating a Database
      • 22.3. 樣版資料庫
      • 22.4. Database Configuration
      • 22.5. Destroying a Database
      • 22.6. Tablespaces
    • 24. 語系
      • 23.1. 語系支援
      • 23.2. Collation Support
      • 23.3. 字元集支援
    • 25. 例行性資料庫維護工作
      • 25.1. 例行性資料清理
      • 25.2. 定期重建索引
      • 25.3. Log 檔案維護
    • 26. 備份及還原
      • 25.1. SQL Dump
      • 25.2. 檔案系統層級備份
      • 25.3. Continuous Archiving and Point-in-Time Recovery (PITR)
    • 27. High Availability, Load Balancing, and Replication
      • 26.1. 比較不同的解決方案
      • 26.2. 日誌轉送備用伺服器 Log-Shipping Standby Servers
      • 26.3. Failover
      • 26.4. Alternative Method for Log Shipping
      • 26.5. Hot Standby
    • 28. 監控資料庫活動
      • 27.1. Standard Unix Tools
      • 27.2. 統計資訊收集器
      • 27.3. Viewing Locks
      • 27.4. Progress Reporting
      • 27.5. Dynamic Tracing
    • 29. 監控磁碟使用情況
      • 28.1. 瞭解磁碟使用情形
      • 28.2. 磁碟空間不足錯誤
    • 30. 高可靠度及預寫日誌
      • 29.1. 可靠度
      • 29.2. Write-Ahead Logging(WAL)
      • 29.3. Asynchronous Commit
      • 29.4. WAL Configuration
      • 29.5. WAL Internals
    • 31. 邏輯複寫(Logical Replication)
      • 30.1. 發佈(Publication)
      • 30.2. 訂閱(Subscription)
      • 30.3. 衝突處理
      • 30.4. 限制
      • 30.5. 架構
      • 30.6. 監控
      • 30.7. 安全性
      • 30.8. 系統設定
      • 30.9. 快速設定
    • 32. Just-in-Time Compilation(JIT)
      • 31.1. What is JIT compilation?
      • 31.2. When to JIT?
      • 31.3. Configuration
      • 31.4. Extensibility
    • 33. 迴歸測試
      • 32.1. Running the Tests
      • 32.2. Test Evaluation
      • 32.3. Variant Comparison Files
      • 32.4. TAP Tests
      • 32.5. Test Coverage Examination
  • IV. 用戶端介面
    • 33. libpq - C Library
      • 33.1. 資料庫連線控制函數
      • 33.2. 連線狀態函數
      • 33.3. Command Execution Functions
      • 33.4. Asynchronous Command Processing
      • 33.5. Retrieving Query Results Row-By-Row
      • 33.6. Canceling Queries in Progress
      • 33.7. The Fast-Path Interface
      • 33.8. Asynchronous Notification
      • 33.9. Functions Associated with the COPY Command
      • 33.10. Control Functions
      • 33.11. Miscellaneous Functions
      • 33.12. Notice Processing
      • 33.13. Event System
      • 33.14. 環境變數
      • 33.15. 密碼檔
      • 33.16. The Connection Service File
      • 33.17. LDAP Lookup of Connection Parameters
      • 33.18. SSL Support
      • 33.19. Behavior in Threaded Programs
      • 33.20. Building libpq Programs
      • 33.21. Example Programs
    • 34. Large Objects
      • 35.1. Introduction
      • 35.2. Implementation Features
      • 35.3. Client Interfaces
      • 35.4. Server-side Functions
      • 35.5. Example Program
    • 35. ECPG - Embedded SQL in C
      • 35.1. The Concept
      • 35.2. Managing Database Connections
      • 35.3. Running SQL Commands
      • 35.4. Using Host Variables
      • 35.5. Dynamic SQL
      • 35.6. pgtypes Library
      • 35.7. Using Descriptor Areas
      • 35.8. Error Handling
      • 35.9. Preprocessor Directives
      • 35.10. Processing Embedded SQL Programs
      • 35.11. Library Functions
      • 35.12. Large Objects
      • 35.13. C++ Applications
      • 35.14. Embedded SQL Commands
      • 35.15. Informix Compatibility Mode
      • 35.16. Internals
    • 36. The Information Schema
      • 36.1. The Schema
      • 36.2. Data Types
      • 36.3. information_schema_catalog_name
      • 36.4. administrable_role_authorizations
      • 36.5. applicable_roles
      • 36.6. attributes
      • 36.7. character_sets
      • 36.8. check_constraint_routine_usage
      • 36.9. check_constraints
      • 36.10. collations
      • 36.11. collation_character_set_applicability
      • 36.12. column_domain_usage
      • 36.13. column_options
      • 36.14. column_privileges
      • 36.16. column_udt_usage
      • 36.17. columns
      • 36.18. constraint_column_usage
      • 37.18. constraint_table_usage
      • 37.19. data_type_privileges
      • 37.20. domain_constraints
      • 37.21. domain_udt_usage
      • 37.22. domains
      • 37.23. element_types
      • 37.24. enabled_roles
      • 37.25. foreign_data_wrapper_options
      • 37.26. foreign_data_wrappers
      • 37.27. foreign_server_options
      • 37.28. foreign_servers
      • 37.29. foreign_table_options
      • 37.30. foreign_tables
      • 36.32. key_column_usage
      • 36.33. parameters
      • 36.34. referential_constraints
      • 37.34. role_column_grants
      • 37.35. role_routine_grants
      • 36.37. role_table_grants
      • 37.37. role_udt_grants
      • 37.38. role_usage_grants
      • 37.39. routine_privileges
      • 37.40. routines
      • 36.42. schemata
      • 37.42. sequences
      • 37.43. sql_features
      • 37.44. sql_implementation_info
      • 37.45. sql_languages
      • 37.46. sql_packages
      • 37.47. sql_parts
      • 37.48. sql_sizing
      • 37.49. sql_sizing_profiles
      • 36.51. table_constraints
      • 36.49. table_privileges
      • 37.52. tables
      • 37.53. transforms
      • 37.54. triggered_update_columns
      • 37.55. triggers
      • 37.56. udt_privileges
      • 37.57. usage_privileges
      • 37.58. user_defined_types
      • 37.59. user_mapping_options
      • 37.60. user_mappings
      • 37.61. view_column_usage
      • 37.62. view_routine_usage
      • 37.63. view_table_usage
      • 37.64. views
  • V. 資料庫程式設計
    • 38. SQL 延伸功能
      • 38.1. How Extensibility Works
      • 37.2. The PostgreSQL Type System
      • 37.3. 使用者自訂函數
      • 37.4. User-defined Procedures
      • 37.5. Query Language (SQL) Functions
      • 37.6. Function Overloading
      • 37.7. 函數易變性類別
      • 37.8. Procedural Language Functions
      • 37.9. Internal Functions
      • 37.10. C-Language Functions
      • 37.11. Function Optimization Information
      • 37.12. User-defined Aggregates
      • 37.13. User-defined Types
      • 37.14. User-defined Operators
      • 37.15. Operator Optimization Information
      • 38.16. Interfacing Extensions To Indexes
      • 37.17. 封裝相關物件到延伸功能中
      • 37.18. Extension Building Infrastructure
    • 38. Triggers
      • 38.1. Overview of Trigger Behavior
      • 38.2. Visibility of Data Changes
      • 38.3. Writing Trigger Functions in C
      • 38.4. A Complete Trigger Example
    • 39. Event Triggers (事件觸發)
      • 39.1. Overview of Event Trigger Behavior
      • 39.2. Event Trigger Firing Matrix
      • 39.3. Writing Event Trigger Functions in C
      • 39.4. A Complete Event Trigger Example
    • 40. 規則系統
      • 40.1. The Query Tree
      • 40.2. Views and the Rule System
      • 40.3. Materialized Views
      • 40.4. Rules on INSERT, UPDATE, and DELETE
      • 40.5. 規則及權限
      • 40.6. Rules and Command Status
      • 40.7. Rules Versus Triggers
    • 41. Procedural Languages(程序語言)
      • 41.1. Installing Procedural Languages
      • 41.2. Structure of PL/pgSQL
      • 41.5. Basic Statements
      • 41.11. 深入了解 PL/pgSQL
    • 42. PL/pgSQL - SQL Procedural Language
      • 42.1. Overview
      • 42.2. Structure of PL/pgSQL
      • 42.3. Declarations
      • 42.4. Expressions
      • 42.5. 基本語法
      • 42.6. Control Structures
    • 43. PL/Tcl - Tcl Procedural Language
    • 44. PL/Perl — Perl Procedural Language
    • 45. PL/Python - Python Procedural Language
      • 45.1. Python 2 vs. Python 3
      • 45.2. PL/Python Functions
      • 45.3. Data Values
      • 45.4. Sharing Data
      • 45.5. Anonymous Code Blocks
      • 45.6. Trigger Functions
      • 45.7. Database Access
      • 45.8. Explicit Subtransactions
      • 45.9. Transaction Management
      • 45.10. Utility Functions
      • 45.11. Environment Variables
    • 46. Server Programming Interface
    • 47. Background Worker Processes
    • 48. Logical Decoding
      • 48.1. Logical Decoding Examples
      • 48.2. Logical Decoding Concepts
      • 48.3. Streaming Replication Protocol Interface
      • 48.4. Logical Decoding SQL Interface
      • 48.5. System Catalogs Related to Logical Decoding
      • 48.6. Logical Decoding Output Plugins
      • 48.7. Logical Decoding Output Writers
      • 48.8. Synchronous Replication Support for Logical Decoding
    • 49. Replication Progress Tracking
  • VI. 參考資訊
    • I. SQL 指令
      • ALTER DATABASE
      • ALTER DEFAULT PRIVILEGES
      • ALTER EXTENSION
      • ALTER FUNCTION
      • ALTER INDEX
      • ALTER LANGUAGE
      • ALTER MATERIALIZED VIEW
      • ALTER POLICY
      • ALTER PUBLICATION
      • ALTER ROLE
      • ALTER RULE
      • ALTER SCHEMA
      • ALTER SEQUENCE
      • ALTER STATISTICS
      • ALTER SUBSCRIPTION
      • ALTER SYSTEM
      • ALTER TABLE
      • ALTER TABLESPACE
      • ALTER TRIGGER
      • ALTER TYPE
      • ALTER USER
      • ALTER VIEW
      • ANALYZE
      • CLUSTER
      • COMMENT
      • COMMIT PREPARED
      • COPY
      • CREATE ACCESS METHOD
      • CREATE CAST
      • CREATE DATABASE
      • CREATE EVENT TRIGGER
      • CREATE EXTENSION
      • CREATE FOREIGN TABLE
      • CREATE FOREIGN DATA WRAPPER
      • CREATE FUNCTION
      • CREATE INDEX
      • CREATE LANGUAGE
      • CREATE MATERIALIZED VIEW
      • CREATE DOMAIN
      • CREATE POLICY
      • CREATE PROCEDURE
      • CREATE PUBLICATION
      • CREATE ROLE
      • CREATE RULE
      • CREATE SCHEMA
      • CREATE SEQUENCE
      • CREATE SERVER
      • CREATE STATISTICS
      • CREATE SUBSCRIPTION
      • CREATE TABLE
      • CREATE TABLE AS
      • CREATE TABLESPACE
      • CREATE TRANSFORM
      • CREATE TRIGGER
      • CREATE TYPE
      • CREATE USER
      • CREATE USER MAPPING
      • CREATE VIEW
      • DEALLOCATE
      • DELETE
      • DO
      • DROP ACCESS METHOD
      • DROP DATABASE
      • DROP EXTENSION
      • DROP FUNCTION
      • DROP INDEX
      • DROP LANGUAGE
      • DROP MATERIALIZED VIEW
      • DROP OWNED
      • DROP POLICY
      • DROP PUBLICATION
      • DROP ROLE
      • DROP RULE
      • DROP SCHEMA
      • DROP SEQUENCE
      • DROP STATISTICS
      • DROP SUBSCRIPTION
      • DROP TABLE
      • DROP TABLESPACE
      • DROP TRANSFORM
      • DROP TRIGGER
      • DROP TYPE
      • DROP USER
      • DROP VIEW
      • EXECUTE
      • EXPLAIN
      • GRANT
      • IMPORT FOREIGN SCHEMA
      • INSERT
      • LISTEN
      • LOAD
      • NOTIFY
      • PREPARE
      • PREPARE TRANSACTION
      • REASSIGN OWNED
      • REFRESH MATERIALIZED VIEW
      • REINDEX
      • RESET
      • REVOKE
      • ROLLBACK PREPARED
      • SECURITY LABEL
      • SELECT
      • SELECT INTO
      • SET
      • SET CONSTRAINTS
      • SET ROLE
      • SET SESSION AUTHORIZATION
      • SET TRANSACTION
      • SHOW
      • TRUNCATE
      • UNLISTEN
      • UPDATE
      • VACUUM
      • VALUES
    • II. PostgreSQL 用戶端工具
      • createdb
      • createuser
      • dropdb
      • dropuser
      • oid2name
      • pgbench
      • pg_basebackup
      • pg_dump
      • pg_dumpall
      • pg_isready
      • pg_receivewal
      • pg_recvlogical
      • pg_restore
      • pg_verifybackup
      • psql
      • vacuumdb
    • III. PostgreSQL 伺服器應用程式
      • initdb
      • pg_archivecleanup
      • pg_ctl
      • pg_standby
      • pg_test_timing
      • pg_upgrade
      • postgres
  • VII. 資料庫進階
    • 50. PostgreSQL 的內部架構
      • 50.1. 處理查詢語句的流程
      • 50.2. How Connections Are Established
      • 50.3. The Parser Stage
      • 50.4. The PostgreSQL Rule System
      • 50.5. Planner/Optimizer
      • 50.6. Executor
    • 51. 系統目錄
      • 51.3. pg_am
      • 51.7. pg_attribute
      • 51.8. pg_authid
      • 51.9. pg_auth_members
      • 51.10. pg_cast
      • 51.11 pg_class
      • 51.12. pg_collation
      • 51.13. pg_constraint
      • 51.15 pg_database
      • 51.21. pg_event_trigger
      • 51.22. pg_extension
      • 51.26 pg_index
      • 51.29. pg_language
      • 51.32. pg_namespace
      • 51.33. pg_opclass
      • 51.38. pg_policy
      • 51.39. pg_proc
      • 51.44. pg_rewrite
      • 51.49. pg_statistic
      • 51.50. pg_statistic_ext
      • 51.52. pg_subscription
      • 51.53. pg_subscription_rel
      • 51.54. pg_tablespace
      • 51.56. pg_trigger
      • 51.62. pg_type
      • 51.66. pg_available_extensions
      • 51.67. pg_available_extension_versions
      • 51.71. pg_hba_file_rules
      • 51.72. pg_indexes
      • 51.73. pg_locks
      • 51.77. pg_prepared_xacts
      • 51.79. pg_replication_origin_status
      • 51.80. pg_replication_slots
      • 51.82 pg_roles
      • 51.85. pg_settings
      • 51.87. pg_shmem_allocations
      • 51.88. pg_stats
      • 51.90. pg_tables
      • 51.93. pg_user
      • 51.95. pg_views
    • 52. Frontend/Backend Protocol
      • 52.1. Overview
      • 52.2. Message Flow
      • 52.3. SASL Authentication
      • 52.4. Streaming Replication Protocol
      • 52.5. Logical Streaming Replication Protocol
      • 52.6. Message Data Types
      • 52.7. Message Formats
      • 52.8. Error and Notice Message Fields
      • 52.9. Logical Replication Message Formats
      • 52.10. Summary of Changes since Protocol 2.0
    • 53. PostgreSQL 程式撰寫慣例
      • 53.1. Formatting
      • 53.2. Reporting Errors Within the Server
      • 53.3. Error Message Style Guide
      • 53.4. Miscellaneous Coding Conventions
    • 54. Native Language Support
      • 54.1. For the Translator
      • 54.2. For the Programmer
    • 55. 撰寫程序語言的處理程序
    • 56. Writing a Foreign Data Wrapper
      • 56.1. Foreign Data Wrapper Functions
      • 56.2. Foreign Data Wrapper Callback Routines
      • 56.3. Foreign Data Wrapper Helper Functions
      • 56.4. Foreign Data Wrapper Query Planning
      • 56.5. Row Locking in Foreign Data Wrappers
    • 59. Genetic Query Optimizer
      • 59.1. Query Handling as a Complex Optimization Problem
      • 59.2. Genetic Algorithms
      • 59.3. Genetic Query Optimization (GEQO) in PostgreSQL
      • 59.4. Further Reading
    • 60. Table Access Method Interface Definition
    • 61. Index Access Method Interface Definition
    • 62. Generic WAL Records
    • 64. B-Tree Indexes
      • 64.1. Introduction
      • 64.2. Behavior of B-Tree Operator Classes
      • 64.3. B-Tree Support Functions
      • 64.4. Implementation
    • 64. GiST Indexes
      • 64.1. Introduction
      • 64.2. Built-in Operator Classes
      • 64.3. Extensibility
      • 64.4. Implementation
      • 64.5. Examples
    • 65. SP-GiST Indexes
      • 65.1. Introduction
      • 65.2. Built-in Operator Classes
      • 65.3. Extensibility
      • 65.4. Implementation
      • 65.5. Examples
    • 66. GIN 索引
      • 66.1. 簡介
      • 66.2. 內建運算子類
      • 66.3. 延伸介面
      • 66.4. 實作說明
      • 66.5. GIN 小巧技
      • 66.6. 限制
      • 66.7. 範例
    • 67. BRIN Indexes
      • 67.1. Introduction
      • 67.2. Built-in Operator Classes
      • 67.3. Extensibility
    • 68. 資料庫實體儲存格式
      • 68.1. Database File Layout
      • 68.2. TOAST
      • 68.3. Free Space Map
      • 68.4 可視性映射表(Visibility Map)
      • 68.5. The Initialization Fork
      • 68.6. Database Page Layout
    • 69. System Catalog Declarations and Initial Contents
    • 70. 查詢計畫如何使用統計資訊
      • 70.1. Row Estimation Examples
      • 70.2. 多元統計資訊範例
      • 70.3. Planner Statistics and Security
    • 71. Backup Manifest Format
  • VIII. 附錄
    • A. PostgreSQL 錯誤代碼
    • B. 日期時間格式支援
      • B.1. 日期時間解譯流程
      • B.2. 日期時間慣用字
      • B.3. 日期時間設定檔
      • B.4. 日期時間的沿革
    • C. SQL 關鍵字
    • D. SQL 相容性
      • D.1. Supported Features
      • D.2. Unsupported Features
      • D.3. XML Limits and Conformance to SQL/XML
    • E. 版本資訊
      • E.1. Release 14
    • F. 延伸支援模組
      • F.1. adminpack
      • F.2. amcheck
      • F.3. auth_delay
      • F.4. auto_explain
      • F.5. bloom
      • F.6. btree_gin
      • F.10. dblink
        • dblink_connect
        • dblink_connect_u
        • dblink_disconnect
        • dblink
        • dblink_exec
        • dblink_open
        • dblink_fetch
        • dblink_close
        • dblink_get_connections
        • dblink_error_message
        • dblink_send_query
        • dblink_is_busy
        • dblink_get_notify
        • dblink_get_result
        • dblink_cancel_query
        • dblink_get_pkey
        • dblink_build_sql_insert
        • dblink_build_sql_delete
        • dblink_build_sql_update
      • F.13. earthdistance
      • F.14. file_fdw
      • F.16. hstore
      • F.24. pg_buffercache
      • F.29. pg_stat_statements
      • F.30. pgstattuple
      • F.31. pg_trgm
      • F.32. pg_visibility
      • F.33. postgres_fdw
      • F.35. sepgsql
      • F.38. tablefunc
      • F.40. test_decoding
      • F.41. tsm_system_rows
      • F.42. tsm_system_time
      • F.44. uuid-ossp
    • G. Additional Supplied Programs
      • G.1. Client Applications
        • oid2name
        • vacuumlo
      • G.2. Server Applications
        • pg_standby
    • H. 外部專案
      • H.1. 用戶端介面
      • H.2. Administration Tools
      • H.3. Procedural Languages
      • H.4. Extensions
    • I. The Source Code Repository
      • I.1. Getting The Source via Git
    • J. 文件取得
    • K. PostgreSQL Limits
    • L. 縮寫字
    • M. Glossary
    • N. 色彩支援
      • N.1. When Color is Used
      • N.2. Configuring the Colors
  • 參考書目
Powered by GitBook
On this page
  • 8.14.1. JSON 輸入與輸出語法
  • 8.14.2. 設計 JSON 文件結構
  • 8.14.3. jsonb Containment and Existence
  • 8.14.4. jsonb Indexing
  • 8.14.5. jsonb Subscripting
  • 8.14.6. 對應轉換
  • 8.14.7. jsonpath Type

Was this helpful?

Edit on GitHub
Export as PDF
  1. II. SQL 查詢語言
  2. 8. 資料型別

8.14. JSON 型別

Previous8.13. XML 型別Next8.15. 陣列

Last updated 3 years ago

Was this helpful?

JSON 資料型別用於儲存 中所規範的 JSON(JavaScript Object Notation)資料。此類資料也可以儲存為 text,但是 JSON 資料型別的優點是可以根據 JSON 規則強制讓每個儲存的值必須是有效的值 。對於這些資料型別中儲存的資料,還提供了各種特定於 JSON 的函數和運算子。 另請參閱。

PostgreSQL 提供了兩種儲存 JSON 資料的型別:json 和 jsonb。為了對這些資料型別實作有效的查詢機制,PostgreSQL 還提供了 中所描述的 jsonpath 資料型別。

json 和 jsonb 資料型別接受幾乎相同的內容集合作為輸入。實際主要的差別是效率。json 資料型別儲存與輸入字串完全相同的內容,處理函數必須在每次執行時重新解析;jsonb 資料型別則以分解後的二進位格式儲存,由於增加了轉換成本,因此資料輸入的速度稍慢,但由於後續不需要解析,因此處理速度明顯加快。jsonb 還支援索引處理,這是一個很大的優勢。

因為 json 型別儲存與輸入字串完全相同的內容,所以它將保留標記之間語義上無關的空白以及 JSON 物件中鍵的順序。另外,如果 JSON 內容物件包含相同的鍵不只一次,則所有鍵/值對都會保留。(處理函數會將最後一個值視為可用的值。)相比之下,jsonb 不會保留空白,不會保留物件中鍵的順序,也不會保留物件中重複的鍵。如果在輸入中指定了重複的鍵,則僅保留最後一個值。

通常,大多數應用程序應該將 JSON 資料儲存為 jsonb,除非有非常特殊的需求,例如關於物件中鍵的順序有一些傳統上的假設。

由於 PostgreSQL 每個資料庫只允許一種字元集的編碼。因此,除非資料庫編碼為 UTF8,否則 JSON 型別不可能嚴格符合 JSON 規範。嘗試直接使用資料庫編碼中無法表示的字元會失敗;相反,character 型別則允許使用可以在資料庫編碼中表示但不能以 UTF8 表示的字元。

RFC 7159 允許 JSON 字串包含 \uXXXX 所表示的 Unicode 轉譯序列。在 json 型別的輸入函數中,無論資料庫編碼如何,都允許 Unicode 轉譯,並且僅檢查語法正確性(即,四個十六進位數字跟在 \u 之後)。但是,jsonb 的輸入函數更嚴格:除非資料庫編碼為 UTF8,否則它不允許非 ASCII 字元(U+007F 以上的字元)使用 Unicode 轉譯。jsonb 型別也拒絕 \u0000(因為無法在 PostgreSQL 的 text 型別中表現),並且堅持認為使用 Unicode surrogate pair 對來指定 Unicode Basic Multilingual Plane 之外的字元都是正確的。有效的 Unicode 轉譯會轉換為等效的 ASCII 或 UTF8 字元進行儲存; 這包括將 surrogate pair 折疊為單個字元。

第 9.15 節中描述的許多 JSON 處理函數會將 Unicode 轉譯為一般字元,因此,即使輸入型別為 json 而不是 jsonb,它們也會拋出與上述類型相同的錯誤。json 輸入函數不進行這些檢查的事實可能被認為是歷史共業,儘管它確實允許以非 UTF8 資料庫編碼的形式簡單儲存(毋須處理)JSON Unicode 轉譯。 通常,如果可以的話,最好避免將 JSON 中的 Unicode 轉譯與非 UTF8 資料庫編碼混在一起。

將字串 JSON 輸入轉換為 jsonb 時,RFC 7159 描述的原始型別將會有效地對應到內建的 PostgreSQL 型別,如 Table 8.23 所示。因此,對於構成有效 jsonb 資料的內容存在一些較小的附加約束條件,這些約束條件既不適用於 json 型別,也不適用於抽象上 JSON,這對應於基礎資料型別可以表示的內容限制。值得注意的是,jsonb 會拒絕 PostgreSQL 數字資料型別範圍之外的數字,而 json 不會。RFC 7159 允許此類實作定義限制。但是,實際上,在其他實作中更容易出現此類問題,因為通常將 JSON 的數字基本型別表示為 IEEE 754 雙精確度浮點數(RFC 7159 明確預期了這一點且允許)。當使用 JSON 作為此類系統的交換格式時,應考慮與 PostgreSQL 最初儲存的資料相比較,可能會有失去數字精確度的風險。

相反,如下表中所示,JSON 基本型別的輸入格式有一些微小的限制,但並不適用於其相應的 PostgreSQL 資料型別。

Table 8.23. JSON Primitive Types and Corresponding PostgreSQL Types

JSON primitive type
PostgreSQL type
Notes

string

text

禁止使用 \u0000,如果資料庫編碼不是 UTF8,則不允許使用非 ASCII Unicode 轉譯

number

numeric

不允許使用 NaN 和 infinity

boolean

boolean

僅接受小寫的 true 和 false

null

(none)

與 SQL NULL 是不同的概念

8.14.1. JSON 輸入與輸出語法

JSON 資料型別的輸入/輸出語法被規範在 RFC 7159 之中。

以下是所有有效的 json(或 jsonb)表示式:

-- Simple scalar/primitive value
-- Primitive values can be numbers, quoted strings, true, false, or null
SELECT '5'::json;

-- Array of zero or more elements (elements need not be of same type)
SELECT '[1, 2, "foo", null]'::json;

-- Object containing pairs of keys and values
-- Note that object keys must always be quoted strings
SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;

-- Arrays and objects can be nested arbitrarily
SELECT '{"foo": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;

如前所述,當輸入 JSON 內容然後在不進行任何其他處理的情況下進行輸出時,json 輸出與輸入相同的內容,而 jsonb 則不會保留與語義無關的細節,像是空格。例如,請注意此處的差別:

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;
                      json                       
-------------------------------------------------
 {"bar": "baz", "balance": 7.77, "active":false}
(1 row)

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
                      jsonb                       
--------------------------------------------------
 {"bar": "baz", "active": false, "balance": 7.77}
(1 row)

值得注意的一個語義無關的細節是,在 jsonb 中,數字將根據基本數字型別的行為進行輸出。實際上,這意味著使用 E 記號輸入的數字將不會以原輸出形式輸出,例如:

SELECT '{"reading": 1.230e-5}'::json, '{"reading": 1.230e-5}'::jsonb;
         json          |          jsonb          
-----------------------+-------------------------
 {"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row)

但是,jsonb 將保留小數尾巴的數字零,如在本範例中所示,即使它們在語義上無意義(例如,相等運算),也是如此。

8.14.2. 設計 JSON 文件結構

將資料表示為 JSON 可以比傳統的關連資料模型要靈活得多,而傳統的關連資料模型在需求多變的環境中非常引人注目。這兩種方法很可能在同一應用程序中共存和互補。但是,即使對於需要最大靈活性的應用程序,仍然建議 JSON 文件具有某種固定的結構。該結構通常是不具有強制性的(儘管可以宣告強制執行某些業務規則),但是具有可預測的結構可以使撰編查詢變得更加容易,該查詢可以有效地彙總資料表中的一組「文件」(datums)。

JSON 資料儲存在資料表中時,與其他任何資料型別一樣,要遵循相同的一致性控制事項。儘管儲存大型文件是可行的,但請記住,任何更新都會取得整筆資料的 row-level lock。考慮將 JSON 文件限制在可管理的大小以內,以減少更新交易事務之間的鎖定競爭。理想情況下,每個 JSON 文件都應代表一個完整交易單位資料(atomic datum),業務規則規定不能將該完整交易單位資料進一步細分為可以獨立更新的較小單位資料。

8.14.3. jsonb Containment and Existence

測試包容性(containment)是 jsonb 的一項重要功能。json 型別沒有平行處理的工具集。包含性測試一個 jsonb 文件是否在其中包含另一個。除說明以外的部份,這些範例會回傳 true:

-- Simple scalar/primitive values contain only the identical value:
SELECT '"foo"'::jsonb @> '"foo"'::jsonb;

-- The array on the right side is contained within the one on the left:
SELECT '[1, 2, 3]'::jsonb @> '[1, 3]'::jsonb;

-- Order of array elements is not significant, so this is also true:
SELECT '[1, 2, 3]'::jsonb @> '[3, 1]'::jsonb;

-- Duplicate array elements don't matter either:
SELECT '[1, 2, 3]'::jsonb @> '[1, 2, 2]'::jsonb;

-- The object with a single pair on the right side is contained
-- within the object on the left side:
SELECT '{"product": "PostgreSQL", "version": 9.4, "jsonb": true}'::jsonb @> '{"version": 9.4}'::jsonb;

-- The array on the right side is not considered contained within the
-- array on the left, even though a similar array is nested within it:
SELECT '[1, 2, [1, 3]]'::jsonb @> '[1, 3]'::jsonb;  -- yields false

-- But with a layer of nesting, it is contained:
SELECT '[1, 2, [1, 3]]'::jsonb @> '[[1, 3]]'::jsonb;

-- Similarly, containment is not reported here:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"bar": "baz"}'::jsonb;  -- yields false

-- A top-level key and an empty object is contained:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"foo": {}}'::jsonb;

一般原則是,包含物件必須在結構和資料內容上與包含的物件相吻合,可能是在從包含的物件中丟棄了一些不吻合的陣列元素或物件鍵/值配對之後。但是請記住,進行包含性檢查時,陣列元素的順序並不重要,並且重複陣列元素僅有一個元素會被視為有效。

作為結構必須吻合的一般原則的特殊例外,陣列可以包含單一基本值:

-- This array contains the primitive string value:
SELECT '["foo", "bar"]'::jsonb @> '"bar"'::jsonb;

-- This exception is not reciprocal -- non-containment is reported here:
SELECT '"bar"'::jsonb @> '["bar"]'::jsonb;  -- yields false

jsonb 還具有一個 existence 運算子,它是包含性的變體:它測試字串(作為 text 值)是否作為物件鍵或陣列元素出現在 jsonb 值的頂層。這些範例回傳 true,除非另有說明:

-- String exists as array element:
SELECT '["foo", "bar", "baz"]'::jsonb ? 'bar';

-- String exists as object key:
SELECT '{"foo": "bar"}'::jsonb ? 'foo';

-- Object values are not considered:
SELECT '{"foo": "bar"}'::jsonb ? 'bar';  -- yields false

-- As with containment, existence must match at the top level:
SELECT '{"foo": {"bar": "baz"}}'::jsonb ? 'bar'; -- yields false

-- A string is considered to exist if it matches a primitive JSON string:
SELECT '"foo"'::jsonb ? 'foo';

當涉及許多鍵或元素時,JSON 物件比陣列更適合用於測試是否包含或存在,因為與陣列不同,JSON 物件在內部進行了最佳化以進行搜尋,因此不需要線性搜尋。

由於 JSON 的包含性是巢狀的,因此適當的查詢可以跳過對子物件的明確選擇。舉例來說,假設我們有一個 doc 欄位,其中包含最上層物件,而大多數物件包含子物件陣列的標籤欄位。該查詢項目,在其中包含“ term”:“ paris”和“ term”:“ food”的子物件出現,而忽略標籤陣列以外的任何鍵:

SELECT doc->'site_name' FROM websites
  WHERE doc @> '{"tags":[{"term":"paris"}, {"term":"food"}]}';

例如,另一個方式可以完成同一件事

SELECT doc->'site_name' FROM websites
  WHERE doc->'tags' @> '[{"term":"paris"}, {"term":"food"}]';

但是這種方法靈活性較差,而且效率通常也較低。

另一方面,JSON 存在性運算子不是巢狀的:它只會在 JSON 內容的最上層查詢指定的鍵或陣列元素。

在第 9.15 節中記錄了各種包含性和存在性的運算子,以及所有其他 JSON 運算子和函數。

8.14.4. jsonb Indexing

GIN 索引可用於有效搜尋大量的 jsonb 文件(datums)中出現的鍵或鍵/值配對。有兩種 GIN “operator classes”,提供了不同的效能和靈活性權衡。

CREATE INDEX idxgin ON api USING GIN (jdoc);

非預設 GIN 運算子類 jsonb_path_ops 僅支援對 @> 運算子進行索引。使用此運算子類建立索引的範例是:

CREATE INDEX idxginp ON api USING GIN (jdoc jsonb_path_ops);

想像一個資料表的範例,該資料表儲存了從第三方 Web 服務檢索到的 JSON 文件以及已文件化的結構定義。典型的文件是:

{
    "guid": "9c36adc1-7fb5-4d5b-83b4-90356a46061a",
    "name": "Angela Barton",
    "is_active": true,
    "company": "Magnafone",
    "address": "178 Howard Place, Gulf, Washington, 702",
    "registered": "2009-11-07T08:53:22 +08:00",
    "latitude": 19.793713,
    "longitude": 86.513373,
    "tags": [
        "enim",
        "aliquip",
        "qui"
    ]
}

我們將這些文件儲存在名為 api 的資料表中,名為 jdoc 的 jsonb 欄位中。如果在此欄位上建立了 GIN 索引,則如下查詢可以使用到該索引:

-- Find documents in which the key "company" has value "Magnafone"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"company": "Magnafone"}';

但是,索引不能用於以下查詢,儘管運算子 ? 是可索引的,但它不會直接套用於索引欄位 jdoc:

-- Find documents in which the key "tags" contains key or array element "qui"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc -> 'tags' ? 'qui';

儘管如此,透過適當使用表示式索引,上述查詢仍可以使用索引。如果在“tags”鍵中查詢特定項目很常見,則定義這樣的索引可能是值得的:

CREATE INDEX idxgintags ON api USING GIN ((jdoc -> 'tags'));

另外,GIN 索引支援 @@ 和 @? 運算子,它們處理 jsonpath 的搜尋。

SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @@ '$.tags[*] == "qui"';
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @@ '$.tags[*] ? (@ == "qui")';

GIN 索引從 jsonpath 中取出以下形式的語句:accessors_chain = const。Accessors chain 可能由 .key,[*] 和 [index] 的 Accessor 所組成_。jsonb_ops 也支持 .*_ 和 .** 的 Accessor。

查詢的另一種方法是利用 containment,例如:

-- Find documents in which the key "tags" contains array element "qui"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"tags": ["qui"]}';

jdoc 欄位上的簡單 GIN 索引可以支援此查詢。但是請注意,這樣的索引將在 jdoc 欄位中儲存每個鍵和值的副本,而上一範例的表示式索引僅儲存在 tag 鍵下所找到的資料。儘管簡單索引方法更加靈活(因為它支援對任何鍵的查詢),但目標表示式索引可能比簡單索引更小且搜尋速度更快。

儘管 jsonb_path_ops 運算子類僅支援使用 @>,@@ 和 @? 運算子的查詢,它比預設的運算子類 jsonb_ops 具有明顯的效能優勢。對於相同資料集,jsonb_path_ops 索引通常也比 jsonb_ops 索引小得多,針對搜尋的專用性更好,尤其是當查詢包含頻繁出現在資料中的鍵時。因此,搜尋性質的操作通常比預設運算子類具有更好的效能。

A disadvantage of the jsonb_path_ops approach is that it produces no index entries for JSON structures not containing any values, such as {"a": {}}. If a search for documents containing such a structure is requested, it will require a full-index scan, which is quite slow. jsonb_path_ops is therefore ill-suited for applications that often perform such searches.

jsonb also supports btree and hash indexes. These are usually useful only if it's important to check equality of complete JSON documents. The btree ordering for jsonb datums is seldom of great interest, but for completeness it is:

Object > Array > Boolean > Number > String > Null

Object with n pairs > object with n - 1 pairs

Array with n elements > array with n - 1 elements

Objects with equal numbers of pairs are compared in the order:

key-1, value-1, key-2 ...

Note that object keys are compared in their storage order; in particular, since shorter keys are stored before longer keys, this can lead to results that might be unintuitive, such as:

{ "aa": 1, "c": 1} > {"b": 1, "d": 1}

Similarly, arrays with equal numbers of elements are compared in the order:

element-1, element-2 ...

Primitive JSON values are compared using the same comparison rules as for the underlying PostgreSQL data type. Strings are compared using the default database collation.

8.14.5. jsonb Subscripting

The jsonb data type supports array-style subscripting expressions to extract and modify elements. Nested values can be indicated by chaining subscripting expressions, following the same rules as the path argument in the jsonb_set function. If a jsonb value is an array, numeric subscripts start at zero, and negative integers count backwards from the last element of the array. Slice expressions are not supported. The result of a subscripting expression is always of the jsonb data type.

UPDATE statements may use subscripting in the SET clause to modify jsonb values. Subscript paths must be traversable for all affected values insofar as they exist. For instance, the path val['a']['b']['c'] can be traversed all the way to c if every val, val['a'], and val['a']['b'] is an object. If any val['a'] or val['a']['b'] is not defined, it will be created as an empty object and filled as necessary. However, if any val itself or one of the intermediary values is defined as a non-object such as a string, number, or jsonb null, traversal cannot proceed so an error is raised and the transaction aborted.

An example of subscripting syntax:

-- Extract object value by key
SELECT ('{"a": 1}'::jsonb)['a'];

-- Extract nested object value by key path
SELECT ('{"a": {"b": {"c": 1}}}'::jsonb)['a']['b']['c'];

-- Extract array element by index
SELECT ('[1, "2", null]'::jsonb)[1];

-- Update object value by key. Note the quotes around '1': the assigned
-- value must be of the jsonb type as well
UPDATE table_name SET jsonb_field['key'] = '1';

-- This will raise an error if any record's jsonb_field['a']['b'] is something
-- other than an object. For example, the value {"a": 1} has a numeric value
-- of the key 'a'.
UPDATE table_name SET jsonb_field['a']['b']['c'] = '1';

-- Filter records using a WHERE clause with subscripting. Since the result of
-- subscripting is jsonb, the value we compare it against must also be jsonb.
-- The double quotes make "value" also a valid jsonb string.
SELECT * FROM table_name WHERE jsonb_field['key'] = '"value"';

jsonb assignment via subscripting handles a few edge cases differently from jsonb_set. When a source jsonb value is NULL, assignment via subscripting will proceed as if it was an empty JSON value of the type (object or array) implied by the subscript key:

-- Where jsonb_field was NULL, it is now {"a": 1}
UPDATE table_name SET jsonb_field['a'] = '1';

-- Where jsonb_field was NULL, it is now [1]
UPDATE table_name SET jsonb_field[0] = '1';

If an index is specified for an array containing too few elements, NULL elements will be appended until the index is reachable and the value can be set.

-- Where jsonb_field was [], it is now [null, null, 2];
-- where jsonb_field was [0], it is now [0, null, 2]
UPDATE table_name SET jsonb_field[2] = '2';

A jsonb value will accept assignments to nonexistent subscript paths as long as the last existing element to be traversed is an object or array, as implied by the corresponding subscript (the element indicated by the last subscript in the path is not traversed and may be anything). Nested array and object structures will be created, and in the former case null-padded, as specified by the subscript path until the assigned value can be placed.

-- Where jsonb_field was {}, it is now {'a': [{'b': 1}]}
UPDATE table_name SET jsonb_field['a'][0]['b'] = '1';

-- Where jsonb_field was [], it is now [null, {'a': 1}]
UPDATE table_name SET jsonb_field[1]['a'] = '1';

8.14.6. 對應轉換

可以使用其他延伸功能來實作針對不同程序語言的 jsonb 型別轉換。

PL/Perl 的延伸功能名稱為 jsonb_plperl 和 jsonb_plperlu。如果使用它們,則 jsonb 的值將視情況對應轉換為到 Perl 的 array、hash 和 scalar。

PL/Python 的延伸功能名稱為 jsonb_plpythonu,jsonb_plpython2u 和 jsonb_plpython3u(有關 PL/Python 的命名約定,請參閱第 45.1 節)。 如果使用它們,則 jsonb 值將適當地對應轉換到 Python 的 dictionary,list 和 scalar。

8.14.7. jsonpath Type

jsonpath 型別實現了 PostgreSQL 中對 SQL/JSON 路徑語法的支援,以有效地查詢 JSON 資料。它提供以二元運算的形式來使用已解析的 SQL/JSON 路徑表示式,此表示式讓路徑引擎從 JSON 資料檢索的項目取出內容,以供 SQL/JSON 查詢函數進一步處理。

SQL / JSON 路徑 predicate 和運算子的語義基本遵循 SQL 標準。同時,為了提供使用 JSON 資料的更自然的方式,SQL/JSON 路徑語法使用了一些 JavaScript 約定:

  • 點(.)用於資料成員存取。

  • 中括號([ ])用於陣列存取。

  • 與從 1 開始的一般 SQL 陣列不同,SQL/JSON 陣列是 從 0 開始。

A path expression consists of a sequence of path elements, which can be the following:

  • Path literals of JSON primitive types: Unicode text, numeric, true, false, or null.

  • Parentheses, which can be used to provide filter expressions or define the order of path evaluation.

Table 8.24. jsonpath Variables

Variable
Description

$

A variable representing the JSON text to be queried (the context item).

$varname

@

A variable representing the result of path evaluation in filter expressions.

Table 8.25. jsonpath Accessors

Accessor Operator
Description

.key

."$varname"

Member accessor that returns an object member with the specified key. If the key name is a named variable starting with $ or does not meet the JavaScript rules of an identifier, it must be enclosed in double quotes as a character string literal.

.*

Wildcard member accessor that returns the values of all members located at the top level of the current object.

.**

Recursive wildcard member accessor that processes all levels of the JSON hierarchy of the current object and returns all the member values, regardless of their nesting level. This is a PostgreSQL extension of the SQL/JSON standard.

.{level}

.{start_level to end_level}

Same as .**, but with a filter over nesting levels of JSON hierarchy. Nesting levels are specified as integers. Zero level corresponds to the current object. To access the lowest nesting level, you can use the last keyword. This is a PostgreSQL extension of the SQL/JSON standard.

[subscript, ...]

Array element accessor. subscript can be given in two forms: index or start_index to end_index. The first form returns a single array element by its index. The second form returns an array slice by the range of indexes, including the elements that correspond to the provided start_index and end_index.

The specified index can be an integer, as well as an expression returning a single numeric value, which is automatically cast to integer. Zero index corresponds to the first array element. You can also use the last keyword to denote the last array element, which is useful for handling arrays of unknown length.

[*]

Wildcard array element accessor that returns all array elements.

有關可用於建構和處理 JSON 內容的內建函數和運算子的列表,請參閱。

jsonb 的預設 GIN 運算子類支援使用最上層鍵存在的運算子 ?,?& 和 ?| 進行查詢。運算子和路徑/值存在性運算子 @>。(有關這些運算子實作的語義的詳細信息,請參見 。)使用此運算子類建立索引的範例是:

現在,WHERE 子句 jdoc->'tags' ? 'qui' 將被識別為可索引運算子的應用程序 ? 到索引表示式 jdoc->'tags'。(有關表示式索引的更多資訊,請參閱。)

The technical difference between a jsonb_ops and a jsonb_path_ops GIN index is that the former creates independent index items for each key and value in the data, while the latter creates index items only for each value in the data. Basically, each jsonb_path_ops index item is a hash of the value and the key(s) leading to it; for example to index {"foo": {"bar": "baz"}}, a single index item would be created incorporating all three of foo, bar, and baz into the hash value. Thus a containment query looking for this structure would result in an extremely specific index search; but there is no way at all to find out whether foo appears as a key. On the other hand, a jsonb_ops index would create three index items representing foo, bar, and baz separately; then to do the containment query, it would look for rows containing all three of these items. While GIN indexes can perform such an AND search fairly efficiently, it will still be less specific and slower than the equivalent jsonb_path_ops search, especially if there are a very large number of rows containing any single one of the three index items.

SQL/JSON 路徑表示式通常以 SQL 字串文字形式寫在 SQL 查詢中,因此它必須用單引號引起來,並且值中所需的任何單引號都必須加倍(請參閱)。某些形式的路徑表示式需要在其中包含字串文字。這些嵌入的字串文字遵循 JavaScript/ECMAScript 約定:它們必須用雙引號引起來,並且在其中可以使用反斜線轉譯符號來表示,否則很難輸入的字元。特別地,在嵌入式字串文字中寫雙引號的方式是 \",而寫反斜線本身則必須寫成 \。其他特殊的反斜線序列包括在 JSON 字串中識別的那些:\b,\f,\n,\r,\t,\v 用於各種 ASCII 控制字元,\uNNNN 用於其 4 進位數字代碼標識的 Unicode 字元。反斜線語法還包括 JSON 不允許的兩種情況:\xNN 僅用兩個十六進位數字編寫的字元代碼,而 \u {N ...} 用於用 1 至 6 個十六進位數字編寫的字元代碼。

Path variables listed in .

Accessor operators listed in .

jsonpath operators and methods listed in

For details on using jsonpath expressions with SQL/JSON query functions, see .

A named variable. Its value can be set by the parameter vars of several JSON processing functions. See and its notes for details.

For this purpose, the term “value” includes array elements, though JSON terminology sometimes considers array elements distinct from values within objects.

第 9.15 節
第 11.7 節
[6]
Table 8.24
Table 8.25
Section 9.15.2.3
Section 9.15.2
[6]
RFC 7159
第 9.15 節
8.14.6 節
Table 9.47
Table 9.45
第 4.1.2.1 節