PostgreSQL 正體中文使用手冊
PostgreSQL.TW官方使用手冊小島故事加入社團
11
11
  • 簡介
  • 前言
    • 1. 什麼是PostgreSQL?
    • 2. PostgreSQL沿革
    • 3. 慣例
    • 4. 其他參考資訊
    • 5. 問題回報指南
  • I. 新手教學
    • 1. 入門指南
      • 1.1. 安裝
      • 1.2. 基礎架構
      • 1.3. 建立一個資料庫
      • 1.4. 存取一個資料庫
    • 2. SQL查詢語言
      • 2.1. 簡介
      • 2.2. 概念
      • 2.3. 創建一個新的資料表
      • 2.4. 資料列是資料表的組成單位
      • 2.5. 資料表的查詢
      • 2.6. 交叉查詢
      • 2.7. 彙總查詢
      • 2.8. 更新資料
      • 2.9. 刪除資料
    • 3. 先進功能
      • 3.1. 簡介
      • 3.2. 檢視表(View)
      • 3.3. 外部索引鍵
      • 3.4. 交易安全
      • 3.5. 窗函數
      • 3.6. 繼承
      • 3.7. 結論
  • II. SQL查詢語言
    • 4. SQL語法
      • 4.1. 語法結構
      • 4.2. 參數表示式
      • 4.3. 函數呼叫
    • 5. 定義資料結構
      • 5.1. 認識資料表
      • 5.2. 預設值
      • 5.3. 限制條件
      • 5.4. 系統欄位
      • 5.5. 表格變更
      • 5.6. 權限
      • 5.7. 資料列安全原則
      • 5.8. Schemas
      • 5.9. 繼承
      • 5.10. 分割資料表
      • 5.11. 外部資料
      • 5.12. 其他資料庫物件
      • 5.13. 相依性追蹤
    • 6. 資料處理
      • 6.1. 新增資料
      • 6.2. 更新資料
      • 6.3. 刪除資料
      • 6.4. 修改並回傳資料
    • 7. 資料查詢
      • 7.1. 概觀
      • 7.2. 資料表表示式
      • 7.3. 取得資料列表
      • 7.4. 合併查詢結果
      • 7.5. 資料排序
      • 7.6. 指定資料範圍
      • 7.7. 列舉資料
      • 7.8. 遞迴查詢(Common Table Expressions)
    • 8. 資料型別
      • 8.1. 數字型別
      • 8.2. 貨幣型別
      • 8.3. 字串型別
      • 8.4. 位元組型別(bytea)
      • 8.5. 日期時間型別
      • 8.6. 布林型別
      • 8.7. 列舉型別
      • 8.8. 地理資訊型別
      • 8.9. 網路資訊型別
      • 8.10. 位元字串型別
      • 8.11. 全文檢索型別
      • 8.12. UUID型別
      • 8.13. XML型別
      • 8.14. JSON型別
      • 8.15. 陣列
      • 8.16. 複合型別
      • 8.17. 範圍型別
      • 8.18. 指標型別
      • 8.19. pg_lsn型別
      • 8.20. 概念型別
    • 9. 函式及運算子
      • 9.1. 邏輯運算子
      • 9.2. 比較函式及運算子
      • 9.3. 數學函式及運算子
      • 9.4. 字串函式及運算子
      • 9.5. 位元字串函式及運算子
      • 9.6. 二元字串函式及運算子
      • 9.7. 特徵比對
      • 9.8. 型別轉換函式
      • 9.9 日期時間函式及運算子
      • 9.10. 列舉型別函式
      • 9.11. 地理資訊函式及運算子
      • 9.12. 網路位址函式及運算子
      • 9.13. 文字檢索函式及運算子
      • 9.14. XML函式
      • 9.15. JSON函式及運算子
      • 9.16. 序列函式
      • 9.17. 條件表示式
      • 9.18. 陣列函式及運算子
      • 9.19. 範圍函式及運算子
      • 9.20. 彙總函數
      • 9.21. Window函式
      • 9.22. 子查詢
      • 9.23. 資料列與陣列的比較運算
      • 9.24. 集合回傳函式
      • 9.25. 系統資訊函數
      • 9.26. 系統管理函式
      • 9.27. 觸發函式
      • 9.28. 事件觸發函式
    • 10. 型別轉換
      • 10.1. 概觀
      • 10.2. 運算子
      • 10.3. 函式
      • 10.4. 資料儲存轉換規則
      • 10.5. UNION、CASE 等相關結構
      • 10.6. SELECT輸出規則
    • 11. 索引(Index)
      • 11.1. 簡介
      • 11.2. 索引型別
      • 11.3. 多欄位索引
      • 11.4. 索引與ORDER BY
      • 11.5. 善用多個索引
      • 11.6. 唯一值索引
      • 11.7. 表示式索引
      • 11.8. 部份索引(partial index)
      • 11.9. 運算子物件及家族
      • 11.10. 索引與排序規則
      • 11.11. 索引限定查詢(Index-only scan)
      • 11.12. 檢查索引運用
    • 12. 全文檢索
      • 12.1. 簡介
      • 12.2. 查詢與索引
      • 12.3. 細部控制
      • 12.4. 延伸功能
      • 12.5. 斷詞
      • 12.6. 字典
      • 12.7. 組態範例
      • 12.8. 測試與除錯
      • 12.9. GIN及GiST索引型別
      • 12.10. psql支援
      • 12.11. 功能限制
    • 13. 一致性管理(MVCC)
      • 13.1. 簡介
      • 13.2. 交易隔離
      • 13.3. 鎖定模式
      • 13.4. 在應用端檢視資料一致性
      • 13.5. 特別注意
      • 13.6. 鎖定與索引
    • 14. 效能技巧
      • 14.1. 善用EXPLAIN
      • 14.2. 統計資訊
      • 14.3. 使用確切的JOIN方式
      • 14.4. 快速建立資料庫內容
      • 14.5. 彈性設定
    • 15. 平行查詢
      • 15.1. 如何運作?
      • 15.2. 啓用時機?
      • 15.3. 平行查詢計畫
      • 15.4. 平行查詢的安全性
  • III. 系統管理
    • 16. 用原始碼安裝
      • 16.1. Short Version
      • 16.2. Requirements
      • 16.3. Getting The Source
      • 16.4. 安裝流程
      • 16.5. Post-Installation Setup
      • 16.6. Supported Platforms
      • 16.7. 平台相關的注意事項
    • 17. 用原始碼在 Windows 上安裝
      • 17.1. Building with Visual C++ or the Microsoft Windows SDK
    • 18. 服務配置與維運
      • 18.1. PostgreSQL 使用者帳號
      • 18.2. Creating a Database Cluster
      • 18.3. Starting the Database Server
      • 18.4. 核心資源管理
      • 18.5. Shutting Down the Server
      • 18.6. Upgrading a PostgreSQL Cluster
      • 18.7. Preventing Server Spoofing
      • 18.8. Encryption Options
      • 18.9. Secure TCP/IP Connections with SSL
      • 18.10. Secure TCP/IP Connections with SSH Tunnels
      • 18.11. 在 Windows 註冊事件日誌
    • 19. 服務組態設定
      • 19.1. Setting Parameters
      • 19.2. File Locations
      • 19.3. 連線與認證
      • 19.4. 資源配置
      • 19.5. Write Ahead Log
      • 19.6. 複寫(Replication)
      • 19.7. 查詢規畫
      • 19.8. 錯誤回報與日誌記錄
      • 19.9. Run-time Statistics
      • 19.10. 自動資料庫清理
      • 19.11. 用戶端連線預設參數
      • 19.12. 交易鎖定管理
      • 19.13. 版本與平台的相容性
      • 19.14. Error Handling
      • 19.15. 預先配置的參數
      • 19.16. Customized Options
      • 19.17. Developer Options
      • 19.18. Short Options
    • 20. 使用者認證
      • 20.1. 設定檔:pg_hba.conf
      • 20.2. User Name Maps
      • 20.3. Authentication Methods
      • 20.4. Authentication Problems
    • 21. 資料庫角色
      • 21.1. Database Roles
      • 21.2. Role Attributes
      • 21.3. Role Membership
      • 21.4. 移除角色
      • 21.5. Default Roles
      • 21.6. Function Security
    • 22. Managing Databases
      • 22.1. Overview
      • 22.2. Creating a Database
      • 22.3. 樣版資料庫
      • 22.4. Database Configuration
      • 22.5. Destroying a Database
      • 22.6. Tablespaces
    • 23. 語系
      • 23.1. 語系支援
      • 23.2. Collation Support
      • 23.3. 字元集支援
    • 24. 例行性資料庫維護工作
      • 24.1. 例行性資料清理
      • 24.2. 定期重建索引
      • 24.3. Log File Maintenance
    • 25. 備份及還原
      • 25.1. SQL Dump
      • 25.2. File System Level Backup
      • 25.3. Continuous Archiving and Point-in-Time Recovery (PITR)
    • 26. High Availability, Load Balancing, and Replication
      • 26.1. Comparison of Different Solutions
      • 26.2. 日誌轉送備用伺服器 Log-Shipping Standby Servers
      • 26.3. Failover
      • 26.4. Alternative Method for Log Shipping
      • 26.5. Hot Standby
    • 27. Recovery Configuration
      • 27.1. Archive Recovery Settings
      • 27.2. Recovery Target Settings
      • 27.3. Standby Server Settings
    • 28. 監控資料庫活動
      • 28.1. Standard Unix Tools
      • 28.2. 統計資訊收集器
      • 28.3. Viewing Locks
      • 28.4. Progress Reporting
      • 28.5. Dynamic Tracing
    • 29. Monitoring Disk Usage
      • 29.1. Determining Disk Usage
      • 29.2. Disk Full Failure
    • 30. 高可靠度及預寫日誌
      • 30.1. Reliability
      • 30.2. Write-Ahead Logging (WAL)
      • 30.3. Asynchronous Commit
      • 30.4. WAL Configuration
      • 30.5. WAL Internals
    • 31. 邏輯複寫(Logical Replication)
      • 31.1. 發佈(Publication)
      • 31.2. 訂閱(Subscription)
      • 31.3. 衝突處理
      • 31.4. 限制
      • 31.5. 架構
      • 31.6. 監控
      • 31.7. 安全性
      • 31.8. 系統設定
      • 31.9. 快速設定
    • 32. Just-in-Time Compilation (JIT)
      • 32.1. What is JIT compilation?
      • 32.2. When to JIT?
      • 32.3. Configuration
      • 32.4. Extensibility
    • 33. 迴歸測試
      • 33.1. Running the Tests
      • 33.2. Test Evaluation
      • 33.3. Variant Comparison Files
      • 33.4. TAP Tests
      • 33.5. Test Coverage Examination
  • IV. 用戶端介面
    • 34. libpq - C Library
      • 34.1. 資料庫連線控制函數
      • 34.2. 連線狀態函數
      • 34.3. Command Execution Functions
      • 34.4. Asynchronous Command Processing
      • 34.5. Retrieving Query Results Row-By-Row
      • 34.6. Canceling Queries in Progress
      • 34.7. The Fast-Path Interface
      • 34.8. Asynchronous Notification
      • 34.9. Functions Associated with the COPY Command
      • 34.10. Control Functions
      • 34.11. Miscellaneous Functions
      • 34.12. Notice Processing
      • 34.13. Event System
      • 34.14. 環境變數
      • 34.15. 密碼檔
      • 34.16. The Connection Service File
      • 34.17. LDAP Lookup of Connection Parameters
      • 34.18. SSL Support
      • 34.19. Behavior in Threaded Programs
      • 34.20. Building libpq Programs
      • 34.21. Example Programs
    • 35. Large Objects
      • 35.1. Introduction
      • 35.2. Implementation Features
      • 35.3. Client Interfaces
      • 35.4. Server-side Functions
      • 35.5. Example Program
    • 36. ECPG - Embedded SQL in C
      • 36.1. The Concept
      • 36.2. Managing Database Connections
      • 36.3. Running SQL Commands
      • 36.4. Using Host Variables
      • 36.5. Dynamic SQL
      • 36.6. pgtypes Library
      • 36.7. Using Descriptor Areas
      • 36.8. Error Handling
      • 36.9. Preprocessor Directives
      • 36.10. Processing Embedded SQL Programs
      • 36.11. Library Functions
      • 36.12. Large Objects
      • 36.13. C++ Applications
      • 36.14. Embedded SQL Commands
      • 36.15. Informix Compatibility Mode
      • 36.16. Internals
    • 37. The Information Schema
      • 37.1. The Schema
      • 37.2. Data Types
      • 37.3. information_schema_catalog_name
      • 37.4. administrable_role_authorizations
      • 37.5. applicable_roles
      • 37.6. attributes
      • 37.7. character_sets
      • 37.8. check_constraint_routine_usage
      • 37.9. check_constraints
      • 37.10. collations
      • 37.11. collation_character_set_applicability
      • 37.12. column_domain_usage
      • 37.13. column_options
      • 37.14. column_privileges
      • 37.15. column_udt_usage
      • 37.16. columns
      • 37.17. constraint_column_usage
      • 37.18. constraint_table_usage
      • 37.19. data_type_privileges
      • 37.20. domain_constraints
      • 37.21. domain_udt_usage
      • 37.22. domains
      • 37.23. element_types
      • 37.24. enabled_roles
      • 37.25. foreign_data_wrapper_options
      • 37.26. foreign_data_wrappers
      • 37.27. foreign_server_options
      • 37.28. foreign_servers
      • 37.29. foreign_table_options
      • 37.30. foreign_tables
      • 37.31. key_column_usage
      • 37.32. parameters
      • 37.33. referential_constraints
      • 37.34. role_column_grants
      • 37.35. role_routine_grants
      • 37.36. role_table_grants
      • 37.37. role_udt_grants
      • 37.38. role_usage_grants
      • 37.39. routine_privileges
      • 37.40. routines
      • 37.41. schemata
      • 37.42. sequences
      • 37.43. sql_features
      • 37.44. sql_implementation_info
      • 37.45. sql_languages
      • 37.46. sql_packages
      • 37.47. sql_parts
      • 37.48. sql_sizing
      • 37.49. sql_sizing_profiles
      • 37.50. table_constraints
      • 37.51. table_privileges
      • 37.52. tables
      • 37.53. transforms
      • 37.54. triggered_update_columns
      • 37.55. triggers
      • 37.56. udt_privileges
      • 37.57. usage_privileges
      • 37.58. user_defined_types
      • 37.59. user_mapping_options
      • 37.60. user_mappings
      • 37.61. view_column_usage
      • 37.62. view_routine_usage
      • 37.63. view_table_usage
      • 37.64. views
  • V. 資料庫程式設計
    • 38. SQL 延伸功能
      • 38.1. How Extensibility Works
      • 38.2. The PostgreSQL Type System
      • 38.3. 使用者自訂函數
      • 38.4. User-defined Procedures
      • 38.5. Query Language (SQL) Functions
      • 38.6. Function Overloading
      • 38.7. 函數易變性類別
      • 38.8. Procedural Language Functions
      • 38.9. Internal Functions
      • 38.10. C-Language Functions
      • 38.11. User-defined Aggregates
      • 38.12. User-defined Types
      • 38.13. User-defined Operators
      • 38.14. Operator Optimization Information
      • 38.15. Interfacing Extensions To Indexes
      • 38.16. Packaging Related Objects into an Extension
      • 38.17. Extension Building Infrastructure
    • 39. Triggers
    • 40. Event Triggers
    • 41. 規則系統
      • 41.1. The Query Tree
      • 41.2. Views and the Rule System
      • 41.3. Materialized Views
      • 41.4. Rules on INSERT, UPDATE, and DELETE
      • 41.5. 規則及權限
      • 41.6. Rules and Command Status
      • 41.7. Rules Versus Triggers
    • 42. Procedural Languages(程序語言)
      • 42.1. Installing Procedural Languages
    • 43. PL/pgSQL - SQL Procedural Language
      • 43.5. 基本語法
    • 44. PL/Tcl - Tcl Procedural Language
    • 45. PL/Perl - Perl Procedural Language
    • 46. PL/Python - Python Procedural Language
    • 47. Server Programming Interface
    • 48. Background Worker Processes
    • 49. Logical Decoding
    • 50. Replication Progress Tracking
  • VI. 參考資訊
    • I. SQL 指令
      • ALTER DATABASE
      • ALTER DEFAULT PRIVILEGES
      • ALTER EXTENSION
      • ALTER FUNCTION
      • ALTER INDEX
      • ALTER LANGUAGE
      • ALTER MATERIALIZED VIEW
      • ALTER POLICY
      • ALTER PUBLICATION
      • ALTER ROLE
      • ALTER RULE
      • ALTER SCHEMA
      • ALTER SEQUENCE
      • ALTER STATISTICS
      • ALTER SUBSCRIPTION
      • ALTER TABLE
      • ALTER TABLESPACE
      • ALTER TRIGGER
      • ALTER TYPE
      • ALTER VIEW
      • ANALYZE
      • CLUSTER
      • COMMENT
      • COPY
      • CREATE CAST
      • CREATE DATABASE
      • CREATE EXTENSION
      • CREATE FOREIGN TABLE
      • CREATE FOREIGN DATA WRAPPER
      • CREATE FUNCTION
      • CREATE INDEX
      • CREATE LANGUAGE
      • CREATE MATERIALIZED VIEW
      • CREATE DOMAIN
      • CREATE POLICY
      • CREATE PROCEDURE
      • CREATE PUBLICATION
      • CREATE ROLE
      • CREATE RULE
      • CREATE SCHEMA
      • CREATE SEQUENCE
      • CREATE SERVER
      • CREATE STATISTICS
      • CREATE SUBSCRIPTION
      • CREATE TABLE
      • CREATE TABLE AS
      • CREATE TABLESPACE
      • CREATE TRANSFORM
      • CREATE TRIGGER
      • CREATE TYPE
      • CREATE USER
      • CREATE USER MAPPING
      • CREATE VIEW
      • DELETE
      • DO
      • DROP DATABASE
      • DROP EXTENSION
      • DROP FUNCTION
      • DROP INDEX
      • DROP LANGUAGE
      • DROP MATERIALIZED VIEW
      • DROP OWNED
      • DROP POLICY
      • DROP ROLE
      • DROP RULE
      • DROP SCHEMA
      • DROP SEQUENCE
      • DROP STATISTICS
      • DROP SUBSCRIPTION
      • DROP TABLE
      • DROP TABLESPACE
      • DROP TRANSFORM
      • DROP TRIGGER
      • DROP TYPE
      • DROP USER
      • DROP VIEW
      • EXECUTE
      • EXPLAIN
      • GRANT
      • IMPORT FOREIGN SCHEMA
      • INSERT
      • LISTEN
      • LOAD
      • NOTIFY
      • PREPARE TRANSACTION
      • REASSIGN OWNED
      • REFRESH MATERIALIZED VIEW
      • REINDEX
      • RESET
      • REVOKE
      • SELECT
      • SELECT INTO
      • SET
      • SET CONSTRAINTS
      • SET ROLE
      • SET SESSION AUTHORIZATION
      • SET TRANSACTION
      • SHOW
      • TRUNCATE
      • UNLISTEN
      • UPDATE
      • VACUUM
      • VALUES
    • II. PostgreSQL 用戶端工具
      • createdb
      • createuser
      • dropdb
      • dropuser
      • pgbench
      • pg_dump
      • psql
      • vacuumdb
    • III. PostgreSQL 伺服器應用程式
      • pg_test_timing
      • postgres
  • VII. 資料庫進階
    • 52. 系統目錄
      • 52.3. pg_am
      • 52.7. pg_attribute
      • 52.8. pg_authid
      • 52.9. pg_auth_members
      • 52.11 pg_class
      • 52.12. pg_collation
      • 52.13. pg_constraint
      • 52.15 pg_database
      • 52.26 pg_index
      • 52.29. pg_language
      • 52.32. pg_namespace
      • 52.33. pg_opclass
      • 52.38. pg_policy
      • 52.39. pg_proc
      • 52.44. pg_rewrite
      • 52.50. pg_statistic
      • 52.51. pg_statistic_ext
      • 52.54. pg_tablespace
      • 52.56. pg_trigger
      • 52.62. pg_type
      • 52.79. pg_replication_origin_status
      • 52.81 pg_roles
      • 52.85. pg_settings
      • 52.87. pg_stats
    • 53. Frontend/Backend Protocol
      • 53.1. Overview
      • 53.2. Message Flow
      • 53.3. SASL Authentication
      • 53.4. Streaming Replication Protocol
      • 53.5. Logical Streaming Replication Protocol
      • 53.6. Message Data Types
      • 53.7. Message Formats
      • 53.8. Error and Notice Message Fields
      • 53.9. Logical Replication Message Formats
      • 53.10. Summary of Changes since Protocol 2.0
    • 54. PostgreSQL 程式撰寫慣例
      • 54.1. Formatting
      • 54.2. Reporting Errors Within the Server
      • 54.3. Error Message Style Guide
      • 54.4. Miscellaneous Coding Conventions
    • 56. Writing A Procedural Language Handler
    • 64. GiST Indexes
      • 64.1. Introduction
      • 64.2. Built-in Operator Classes
      • 64.3. Extensibility
      • 64.4. Implementation
      • 64.5. Examples
    • 65. SP-GiST Indexes
      • 65.1. Introduction
      • 65.2. Built-in Operator Classes
      • 65.3. Extensibility
      • 65.4. Implementation
      • 65.5. Examples
    • 66. GIN 索引
      • 66.1. 簡介
      • 66.2. 內建運算子類
      • 66.3. Extensibility
      • 66.4. Implementation
      • 66.5. GIN Tips and Tricks
      • 66.6. Limitations
      • 66.7. Examples
    • 67. BRIN Indexes
      • 67.1. Introduction
      • 67.2. Built-in Operator Classes
      • 67.3. Extensibility
    • 68. 資料庫實體儲存格式
      • 68.2. TOAST
      • 68.4 可視性映射表(Visibility Map)
    • 70. How the Planner Uses Statistics
      • 70.2. Multivariate Statistics Examples
  • VIII. 附錄
    • A. PostgreSQL錯誤代碼
    • B. 日期時間格式支援
      • B.1. 日期時間解譯流程
      • B.2. 日期時間慣用字
      • B.3. 日期時間設定檔
      • B.4. 日期時間的沿革
    • C. SQL 關鍵字
    • D. SQL 相容性
    • E. 版本資訊
    • F. 延伸支援模組
      • F.4. auto_explain
      • F.11. dblink
        • dblink
      • F.33. pg_visibility
    • G. Additional Supplied Programs
      • G.1. Client Applications
        • oid2name
        • vacuumlo
      • G.2. Server Applications
        • pg_standby
    • H. 外部專案
      • H.1. 用戶端介面
      • H.2. Administration Tools
      • H.3. Procedural Languages
      • H.4. Extensions
    • I. The Source Code Repository
      • I.1. Getting The Source via Git
    • J. 文件取得
    • K. 縮寫字
  • 參考書目
Powered by GitBook
On this page
  • Synopsis
  • Description
  • Options
  • Usage
  • See Also

Was this helpful?

Edit on Git
Export as PDF
  1. VI. 參考資訊
  2. III. PostgreSQL 伺服器應用程式

pg_test_timing

pg_test_timing — measure timing overhead

Synopsis

pg_test_timing [option...]

Description

pg_test_timing is a tool to measure the timing overhead on your system and confirm that the system time never moves backwards. Systems that are slow to collect timing data can give less accurate EXPLAIN ANALYZE results.

Options

pg_test_timing accepts the following command-line options:-d duration --duration=duration

Specifies the test duration, in seconds. Longer durations give slightly better accuracy, and are more likely to discover problems with the system clock moving backwards. The default test duration is 3 seconds.-V --version

Print the pg_test_timing version and exit.-? --help

Show help about pg_test_timing command line arguments, and exit.

Usage

Interpreting results

Good results will show most (>90%) individual timing calls take less than one microsecond. Average per loop overhead will be even lower, below 100 nanoseconds. This example from an Intel i7-860 system using a TSC clock source shows excellent performance:

Testing timing overhead for 3 seconds.
Per loop time including overhead: 35.96 ns
Histogram of timing durations:
  < us   % of total      count
     1     96.40465   80435604
     2      3.59518    2999652
     4      0.00015        126
     8      0.00002         13
    16      0.00000          2

Note that different units are used for the per loop time than the histogram. The loop can have resolution within a few nanoseconds (ns), while the individual timing calls can only resolve down to one microsecond (us).

Measuring executor timing overhead

When the query executor is running a statement using EXPLAIN ANALYZE, individual operations are timed as well as showing a summary. The overhead of your system can be checked by counting rows with the psql program:

CREATE TABLE t AS SELECT * FROM generate_series(1,100000);
\timing
SELECT COUNT(*) FROM t;
EXPLAIN ANALYZE SELECT COUNT(*) FROM t;

The i7-860 system measured runs the count query in 9.8 ms while the EXPLAIN ANALYZE version takes 16.6 ms, each processing just over 100,000 rows. That 6.8 ms difference means the timing overhead per row is 68 ns, about twice what pg_test_timing estimated it would be. Even that relatively small amount of overhead is making the fully timed count statement take almost 70% longer. On more substantial queries, the timing overhead would be less problematic.

Changing time sources

On some newer Linux systems, it's possible to change the clock source used to collect timing data at any time. A second example shows the slowdown possible from switching to the slower acpi_pm time source, on the same system used for the fast results above:

# cat /sys/devices/system/clocksource/clocksource0/available_clocksource
tsc hpet acpi_pm
# echo acpi_pm > /sys/devices/system/clocksource/clocksource0/current_clocksource
# pg_test_timing
Per loop time including overhead: 722.92 ns
Histogram of timing durations:
  < us   % of total      count
     1     27.84870    1155682
     2     72.05956    2990371
     4      0.07810       3241
     8      0.01357        563
    16      0.00007          3

In this configuration, the sample EXPLAIN ANALYZE above takes 115.9 ms. That's 1061 ns of timing overhead, again a small multiple of what's measured directly by this utility. That much timing overhead means the actual query itself is only taking a tiny fraction of the accounted for time, most of it is being consumed in overhead instead. In this configuration, any EXPLAIN ANALYZE totals involving many timed operations would be inflated significantly by timing overhead.

FreeBSD also allows changing the time source on the fly, and it logs information about the timer selected during boot:

# dmesg | grep "Timecounter"
Timecounter "ACPI-fast" frequency 3579545 Hz quality 900
Timecounter "i8254" frequency 1193182 Hz quality 0
Timecounters tick every 10.000 msec
Timecounter "TSC" frequency 2531787134 Hz quality 800
# sysctl kern.timecounter.hardware=TSC
kern.timecounter.hardware: ACPI-fast -> TSC

Other systems may only allow setting the time source on boot. On older Linux systems the "clock" kernel setting is the only way to make this sort of change. And even on some more recent ones, the only option you'll see for a clock source is "jiffies". Jiffies are the older Linux software clock implementation, which can have good resolution when it's backed by fast enough timing hardware, as in this example:

$ cat /sys/devices/system/clocksource/clocksource0/available_clocksource
jiffies
$ dmesg | grep time.c
time.c: Using 3.579545 MHz WALL PM GTOD PIT/TSC timer.
time.c: Detected 2400.153 MHz processor.
$ pg_test_timing
Testing timing overhead for 3 seconds.
Per timing duration including loop overhead: 97.75 ns
Histogram of timing durations:
  < us   % of total      count
     1     90.23734   27694571
     2      9.75277    2993204
     4      0.00981       3010
     8      0.00007         22
    16      0.00000          1
    32      0.00000          1

Clock hardware and timing accuracy

Collecting accurate timing information is normally done on computers using hardware clocks with various levels of accuracy. With some hardware the operating systems can pass the system clock time almost directly to programs. A system clock can also be derived from a chip that simply provides timing interrupts, periodic ticks at some known time interval. In either case, operating system kernels provide a clock source that hides these details. But the accuracy of that clock source and how quickly it can return results varies based on the underlying hardware.

Inaccurate time keeping can result in system instability. Test any change to the clock source very carefully. Operating system defaults are sometimes made to favor reliability over best accuracy. And if you are using a virtual machine, look into the recommended time sources compatible with it. Virtual hardware faces additional difficulties when emulating timers, and there are often per operating system settings suggested by vendors.

The Time Stamp Counter (TSC) clock source is the most accurate one available on current generation CPUs. It's the preferred way to track the system time when it's supported by the operating system and the TSC clock is reliable. There are several ways that TSC can fail to provide an accurate timing source, making it unreliable. Older systems can have a TSC clock that varies based on the CPU temperature, making it unusable for timing. Trying to use TSC on some older multicore CPUs can give a reported time that's inconsistent among multiple cores. This can result in the time going backwards, a problem this program checks for. And even the newest systems can fail to provide accurate TSC timing with very aggressive power saving configurations.

Newer operating systems may check for the known TSC problems and switch to a slower, more stable clock source when they are seen. If your system supports TSC time but doesn't default to that, it may be disabled for a good reason. And some operating systems may not detect all the possible problems correctly, or will allow using TSC even in situations where it's known to be inaccurate.

The High Precision Event Timer (HPET) is the preferred timer on systems where it's available and TSC is not accurate. The timer chip itself is programmable to allow up to 100 nanosecond resolution, but you may not see that much accuracy in your system clock.

Advanced Configuration and Power Interface (ACPI) provides a Power Management (PM) Timer, which Linux refers to as the acpi_pm. The clock derived from acpi_pm will at best provide 300 nanosecond resolution.

Timers used on older PC hardware include the 8254 Programmable Interval Timer (PIT), the real-time clock (RTC), the Advanced Programmable Interrupt Controller (APIC) timer, and the Cyclone timer. These timers aim for millisecond resolution.

See Also

PreviousIII. PostgreSQL 伺服器應用程式Nextpostgres

Last updated 6 years ago

Was this helpful?

EXPLAIN