PostgreSQL 正體中文使用手冊
PostgreSQL.TW官方使用手冊小島故事加入社團
14
14
  • 簡介
  • 前言
    • 1. 什麼是 PostgreSQL?
    • 2. PostgreSQL 沿革
    • 3. 慣例
    • 4. 其他參考資訊
    • 5. 問題回報指南
  • I. 新手教學
    • 1. 入門指南
      • 1.1. 安裝
      • 1.2. 基礎架構
      • 1.3. 建立一個資料庫
      • 1.4. 存取一個資料庫
    • 2. SQL 查詢語言
      • 2.1. 簡介
      • 2.2. 概念
      • 2.3. 創建一個新的資料表
      • 2.4. 資料列是資料表的組成單位
      • 2.5. 資料表的查詢
      • 2.6. 交叉查詢
      • 2.7. 彙總查詢
      • 2.8. 更新資料
      • 2.9. 刪除資料
    • 3. 先進功能
      • 3.1. 簡介
      • 3.2. 檢視表(View)
      • 3.3. 外部索引鍵
      • 3.4. 交易安全
      • 3.5. 窗函數
      • 3.6. 繼承
      • 3.7. 結論
  • II. SQL 查詢語言
    • 4. SQL 語法
      • 4.1. 語法結構
      • 4.2. 參數表示式
      • 4.3. 函數呼叫
    • 5. 定義資料結構
      • 5.1. 認識資料表
      • 5.2. 預設值
      • 5.3. Generated Columns
      • 5.4. 限制條件
      • 5.5. 系統欄位
      • 5.6. 表格變更
      • 5.7. 權限
      • 5.8. 資料列安全原則
      • 5.9. Schemas
      • 5.10. 繼承
      • 5.11. 分割資料表
      • 5.12. 外部資料
      • 5.13. 其他資料庫物件
      • 5.14. 相依性追蹤
    • 6. 資料處理
      • 6.1. 新增資料
      • 6.2. 更新資料
      • 6.3. 刪除資料
      • 6.4. 修改並回傳資料
    • 7. 資料查詢
      • 7.1. 概觀
      • 7.2. 資料表表示式
      • 7.3. 取得資料列表
      • 7.4. 合併查詢結果
      • 7.5. 資料排序
      • 7.6. LIMIT 和 OFFSET
      • 7.7. VALUES 列舉資料
      • 7.8. WITH Querys(Common Table Expressions)
    • 8. 資料型別
      • 8.1. 數字型別
      • 8.2. 貨幣型別
      • 8.3. 字串型別
      • 8.4. 位元組型別(bytea)
      • 8.5. 日期時間型別
      • 8.6. 布林型別
      • 8.7. 列舉型別
      • 8.8. 地理資訊型別
      • 8.9. 網路資訊型別
      • 8.10. 位元字串型別
      • 8.11. 全文檢索型別
      • 8.12. UUID 型別
      • 8.13. XML 型別
      • 8.14. JSON 型別
      • 8.15. 陣列
      • 8.16. 複合型別
      • 8.17. 範圍型別
      • 8.18. Domain Types
      • 8.19. 物件指標型別
      • 8.20. pg_lsn 型別
      • 8.21. 概念型別
    • 9. 函式及運算子
      • 9.1. 邏輯運算子
      • 9.2. 比較函式及運算子
      • 9.3. 數學函式及運算子
      • 9.4. 字串函式及運算子
      • 9.5. 位元字串函式及運算子
      • 9.6. 二元字串函式及運算子
      • 9.7. 特徵比對
      • 9.8. 型別轉換函式
      • 9.9 日期時間函式及運算子
      • 9.10. 列舉型別函式
      • 9.11. 地理資訊函式及運算子
      • 9.12. 網路位址函式及運算子
      • 9.13. 文字檢索函式及運算子
      • 9.14. UUID Functions
      • 9.15. XML 函式
      • 9.16. JSON 函式及運算子
      • 9.17. 序列函式
      • 9.18. 條件表示式
      • 9.19. 陣列函式及運算子
      • 9.20. 範圍函式及運算子
      • 9.21. 彙總函數
      • 9.22. Window 函式
      • 9.23. 子查詢
      • 9.24. 資料列與陣列的比較運算
      • 9.25. 集合回傳函式
      • 9.26. 系統資訊函數
      • 9.27. 系統管理函式
      • 9.28. 觸發函式
      • 9.29. 事件觸發函式
      • 9.30. Statistics Information Functions
    • 10. 型別轉換
      • 10.1. 概觀
      • 10.2. 運算子
      • 10.3. 函式
      • 10.4. 資料儲存轉換規則
      • 10.5. UNION、CASE 等相關結構
      • 10.6. SELECT 輸出規則
    • 11. 索引(Index)
      • 11.1. 簡介
      • 11.2. 索引型別
      • 11.3. 多欄位索引
      • 11.4. 索引與 ORDER BY
      • 11.5. 善用多個索引
      • 11.6. 唯一值索引
      • 11.7. 表示式索引
      • 11.8. 部份索引(partial index)
      • 11.9. Index-Only Scans and Covering Indexes
      • 11.10. 運算子物件及家族
      • 11.11. 索引與排序規則
      • 11.12. 檢查索引運用
    • 12. 全文檢索
      • 12.1. 簡介
      • 12.2. 查詢與索引
      • 12.3. 細部控制
      • 12.4. 延伸功能
      • 12.5. 斷詞
      • 12.6. 字典
      • 12.7. 組態範例
      • 12.8. 測試與除錯
      • 12.9. GIN 及 GiST 索引型別
      • 12.10. psql支援
      • 12.11. 功能限制
    • 13. 一致性管理(MVCC)
      • 13.1. 簡介
      • 13.2. 交易隔離
      • 13.3. 鎖定模式
      • 13.4. 在應用端檢視資料一致性
      • 13.5. 特別注意
      • 13.6. 鎖定與索引
    • 14. 效能技巧
      • 14.1. 善用 EXPLAIN
      • 14.2. 統計資訊
      • 14.3. 使用確切的 JOIN 方式
      • 14.4. 快速建立資料庫內容
      • 14.5. 風險性彈性設定
    • 15. 平行查詢
      • 15.1. 如何運作?
      • 15.2. 啓用時機?
      • 15.3. 平行查詢計畫
      • 15.4. 平行查詢的安全性
  • III. 系統管理
    • 16. Installation from Binaries
    • 17. 用原始碼安裝
      • 16.1. Short Version
      • 16.2. Requirements
      • 16.3. Getting The Source
      • 16.4. 安裝流程
      • 16.5. Post-Installation Setup
      • 16.6. Supported Platforms
      • 16.7. 平台相關的注意事項
    • 18. 用原始碼在 Windows 上安裝
      • 17.1. Building with Visual C++ or the Microsoft Windows SDK
    • 19. 服務配置與維運
      • 18.1. PostgreSQL 使用者帳號
      • 18.2. Creating a Database Cluster
      • 18.3. Starting the Database Server
      • 18.4. 核心資源管理
      • 18.5. Shutting Down the Server
      • 18.6. Upgrading a PostgreSQL Cluster
      • 18.7. Preventing Server Spoofing
      • 18.8. Encryption Options
      • 18.9. Secure TCP/IP Connections with SSL
      • 18.10. Secure TCP/IP Connections with GSSAPI Encryption
      • 18.11. Secure TCP/IP Connections with SSH Tunnels
      • 18.12. 在 Windows 註冊事件日誌
    • 20. 服務組態設定
      • 19.1. Setting Parameters
      • 19.2. File Locations
      • 19.3. 連線與認證
      • 19.4. 資源配置
      • 19.5. Write Ahead Log
      • 19.6. 複寫(Replication)
      • 19.7. 查詢規畫
      • 19.8. 錯誤回報與日誌記錄
      • 19.9. 執行階段統計資訊
      • 19.10. 自動資料庫清理
      • 20.11. 用戶端連線預設參數
      • 19.12. 交易鎖定管理
      • 19.13. 版本與平台的相容性
      • 19.14. Error Handling
      • 19.15. 預先配置的參數
      • 19.16. Customized Options
      • 19.17. Developer Options
      • 19.18. Short Options
    • 21. 使用者認證
      • 20.1. 設定檔:pg_hba.conf
      • 20.2. User Name Maps
      • 20.3. Authentication Methods
      • 20.4. Trust Authentication
      • 20.5. Password Authentication
      • 20.6. GSSAPI Authentication
      • 20.7. SSPI Authentication
      • 20.8. Ident Authentication
      • 20.9. Peer Authentication
      • 20.10. LDAP Authentication
      • 20.11. RADIUS Authentication
      • 20.12. Certificate Authentication
      • 20.13. PAM Authentication
    • 22. 資料庫角色
      • 22.1. Database Roles
      • 22.2. Role Attributes
      • 22.3. Role Membership
      • 22.4. 移除角色
      • 22.5. Default Roles
      • 22.6. Function Security
    • 23. Managing Databases
      • 22.1. Overview
      • 22.2. Creating a Database
      • 22.3. 樣版資料庫
      • 22.4. Database Configuration
      • 22.5. Destroying a Database
      • 22.6. Tablespaces
    • 24. 語系
      • 23.1. 語系支援
      • 23.2. Collation Support
      • 23.3. 字元集支援
    • 25. 例行性資料庫維護工作
      • 25.1. 例行性資料清理
      • 25.2. 定期重建索引
      • 25.3. Log 檔案維護
    • 26. 備份及還原
      • 25.1. SQL Dump
      • 25.2. 檔案系統層級備份
      • 25.3. Continuous Archiving and Point-in-Time Recovery (PITR)
    • 27. High Availability, Load Balancing, and Replication
      • 26.1. 比較不同的解決方案
      • 26.2. 日誌轉送備用伺服器 Log-Shipping Standby Servers
      • 26.3. Failover
      • 26.4. Alternative Method for Log Shipping
      • 26.5. Hot Standby
    • 28. 監控資料庫活動
      • 27.1. Standard Unix Tools
      • 27.2. 統計資訊收集器
      • 27.3. Viewing Locks
      • 27.4. Progress Reporting
      • 27.5. Dynamic Tracing
    • 29. 監控磁碟使用情況
      • 28.1. 瞭解磁碟使用情形
      • 28.2. 磁碟空間不足錯誤
    • 30. 高可靠度及預寫日誌
      • 29.1. 可靠度
      • 29.2. Write-Ahead Logging(WAL)
      • 29.3. Asynchronous Commit
      • 29.4. WAL Configuration
      • 29.5. WAL Internals
    • 31. 邏輯複寫(Logical Replication)
      • 30.1. 發佈(Publication)
      • 30.2. 訂閱(Subscription)
      • 30.3. 衝突處理
      • 30.4. 限制
      • 30.5. 架構
      • 30.6. 監控
      • 30.7. 安全性
      • 30.8. 系統設定
      • 30.9. 快速設定
    • 32. Just-in-Time Compilation(JIT)
      • 31.1. What is JIT compilation?
      • 31.2. When to JIT?
      • 31.3. Configuration
      • 31.4. Extensibility
    • 33. 迴歸測試
      • 32.1. Running the Tests
      • 32.2. Test Evaluation
      • 32.3. Variant Comparison Files
      • 32.4. TAP Tests
      • 32.5. Test Coverage Examination
  • IV. 用戶端介面
    • 33. libpq - C Library
      • 33.1. 資料庫連線控制函數
      • 33.2. 連線狀態函數
      • 33.3. Command Execution Functions
      • 33.4. Asynchronous Command Processing
      • 33.5. Retrieving Query Results Row-By-Row
      • 33.6. Canceling Queries in Progress
      • 33.7. The Fast-Path Interface
      • 33.8. Asynchronous Notification
      • 33.9. Functions Associated with the COPY Command
      • 33.10. Control Functions
      • 33.11. Miscellaneous Functions
      • 33.12. Notice Processing
      • 33.13. Event System
      • 33.14. 環境變數
      • 33.15. 密碼檔
      • 33.16. The Connection Service File
      • 33.17. LDAP Lookup of Connection Parameters
      • 33.18. SSL Support
      • 33.19. Behavior in Threaded Programs
      • 33.20. Building libpq Programs
      • 33.21. Example Programs
    • 34. Large Objects
      • 35.1. Introduction
      • 35.2. Implementation Features
      • 35.3. Client Interfaces
      • 35.4. Server-side Functions
      • 35.5. Example Program
    • 35. ECPG - Embedded SQL in C
      • 35.1. The Concept
      • 35.2. Managing Database Connections
      • 35.3. Running SQL Commands
      • 35.4. Using Host Variables
      • 35.5. Dynamic SQL
      • 35.6. pgtypes Library
      • 35.7. Using Descriptor Areas
      • 35.8. Error Handling
      • 35.9. Preprocessor Directives
      • 35.10. Processing Embedded SQL Programs
      • 35.11. Library Functions
      • 35.12. Large Objects
      • 35.13. C++ Applications
      • 35.14. Embedded SQL Commands
      • 35.15. Informix Compatibility Mode
      • 35.16. Internals
    • 36. The Information Schema
      • 36.1. The Schema
      • 36.2. Data Types
      • 36.3. information_schema_catalog_name
      • 36.4. administrable_role_authorizations
      • 36.5. applicable_roles
      • 36.6. attributes
      • 36.7. character_sets
      • 36.8. check_constraint_routine_usage
      • 36.9. check_constraints
      • 36.10. collations
      • 36.11. collation_character_set_applicability
      • 36.12. column_domain_usage
      • 36.13. column_options
      • 36.14. column_privileges
      • 36.16. column_udt_usage
      • 36.17. columns
      • 36.18. constraint_column_usage
      • 37.18. constraint_table_usage
      • 37.19. data_type_privileges
      • 37.20. domain_constraints
      • 37.21. domain_udt_usage
      • 37.22. domains
      • 37.23. element_types
      • 37.24. enabled_roles
      • 37.25. foreign_data_wrapper_options
      • 37.26. foreign_data_wrappers
      • 37.27. foreign_server_options
      • 37.28. foreign_servers
      • 37.29. foreign_table_options
      • 37.30. foreign_tables
      • 36.32. key_column_usage
      • 36.33. parameters
      • 36.34. referential_constraints
      • 37.34. role_column_grants
      • 37.35. role_routine_grants
      • 36.37. role_table_grants
      • 37.37. role_udt_grants
      • 37.38. role_usage_grants
      • 37.39. routine_privileges
      • 37.40. routines
      • 36.42. schemata
      • 37.42. sequences
      • 37.43. sql_features
      • 37.44. sql_implementation_info
      • 37.45. sql_languages
      • 37.46. sql_packages
      • 37.47. sql_parts
      • 37.48. sql_sizing
      • 37.49. sql_sizing_profiles
      • 36.51. table_constraints
      • 36.49. table_privileges
      • 37.52. tables
      • 37.53. transforms
      • 37.54. triggered_update_columns
      • 37.55. triggers
      • 37.56. udt_privileges
      • 37.57. usage_privileges
      • 37.58. user_defined_types
      • 37.59. user_mapping_options
      • 37.60. user_mappings
      • 37.61. view_column_usage
      • 37.62. view_routine_usage
      • 37.63. view_table_usage
      • 37.64. views
  • V. 資料庫程式設計
    • 38. SQL 延伸功能
      • 38.1. How Extensibility Works
      • 37.2. The PostgreSQL Type System
      • 37.3. 使用者自訂函數
      • 37.4. User-defined Procedures
      • 37.5. Query Language (SQL) Functions
      • 37.6. Function Overloading
      • 37.7. 函數易變性類別
      • 37.8. Procedural Language Functions
      • 37.9. Internal Functions
      • 37.10. C-Language Functions
      • 37.11. Function Optimization Information
      • 37.12. User-defined Aggregates
      • 37.13. User-defined Types
      • 37.14. User-defined Operators
      • 37.15. Operator Optimization Information
      • 38.16. Interfacing Extensions To Indexes
      • 37.17. 封裝相關物件到延伸功能中
      • 37.18. Extension Building Infrastructure
    • 38. Triggers
      • 38.1. Overview of Trigger Behavior
      • 38.2. Visibility of Data Changes
      • 38.3. Writing Trigger Functions in C
      • 38.4. A Complete Trigger Example
    • 39. Event Triggers (事件觸發)
      • 39.1. Overview of Event Trigger Behavior
      • 39.2. Event Trigger Firing Matrix
      • 39.3. Writing Event Trigger Functions in C
      • 39.4. A Complete Event Trigger Example
    • 40. 規則系統
      • 40.1. The Query Tree
      • 40.2. Views and the Rule System
      • 40.3. Materialized Views
      • 40.4. Rules on INSERT, UPDATE, and DELETE
      • 40.5. 規則及權限
      • 40.6. Rules and Command Status
      • 40.7. Rules Versus Triggers
    • 41. Procedural Languages(程序語言)
      • 41.1. Installing Procedural Languages
      • 41.2. Structure of PL/pgSQL
      • 41.5. Basic Statements
      • 41.11. 深入了解 PL/pgSQL
    • 42. PL/pgSQL - SQL Procedural Language
      • 42.1. Overview
      • 42.2. Structure of PL/pgSQL
      • 42.3. Declarations
      • 42.4. Expressions
      • 42.5. 基本語法
      • 42.6. Control Structures
    • 43. PL/Tcl - Tcl Procedural Language
    • 44. PL/Perl — Perl Procedural Language
    • 45. PL/Python - Python Procedural Language
      • 45.1. Python 2 vs. Python 3
      • 45.2. PL/Python Functions
      • 45.3. Data Values
      • 45.4. Sharing Data
      • 45.5. Anonymous Code Blocks
      • 45.6. Trigger Functions
      • 45.7. Database Access
      • 45.8. Explicit Subtransactions
      • 45.9. Transaction Management
      • 45.10. Utility Functions
      • 45.11. Environment Variables
    • 46. Server Programming Interface
    • 47. Background Worker Processes
    • 48. Logical Decoding
      • 48.1. Logical Decoding Examples
      • 48.2. Logical Decoding Concepts
      • 48.3. Streaming Replication Protocol Interface
      • 48.4. Logical Decoding SQL Interface
      • 48.5. System Catalogs Related to Logical Decoding
      • 48.6. Logical Decoding Output Plugins
      • 48.7. Logical Decoding Output Writers
      • 48.8. Synchronous Replication Support for Logical Decoding
    • 49. Replication Progress Tracking
  • VI. 參考資訊
    • I. SQL 指令
      • ALTER DATABASE
      • ALTER DEFAULT PRIVILEGES
      • ALTER EXTENSION
      • ALTER FUNCTION
      • ALTER INDEX
      • ALTER LANGUAGE
      • ALTER MATERIALIZED VIEW
      • ALTER POLICY
      • ALTER PUBLICATION
      • ALTER ROLE
      • ALTER RULE
      • ALTER SCHEMA
      • ALTER SEQUENCE
      • ALTER STATISTICS
      • ALTER SUBSCRIPTION
      • ALTER SYSTEM
      • ALTER TABLE
      • ALTER TABLESPACE
      • ALTER TRIGGER
      • ALTER TYPE
      • ALTER USER
      • ALTER VIEW
      • ANALYZE
      • CLUSTER
      • COMMENT
      • COMMIT PREPARED
      • COPY
      • CREATE ACCESS METHOD
      • CREATE CAST
      • CREATE DATABASE
      • CREATE EVENT TRIGGER
      • CREATE EXTENSION
      • CREATE FOREIGN TABLE
      • CREATE FOREIGN DATA WRAPPER
      • CREATE FUNCTION
      • CREATE INDEX
      • CREATE LANGUAGE
      • CREATE MATERIALIZED VIEW
      • CREATE DOMAIN
      • CREATE POLICY
      • CREATE PROCEDURE
      • CREATE PUBLICATION
      • CREATE ROLE
      • CREATE RULE
      • CREATE SCHEMA
      • CREATE SEQUENCE
      • CREATE SERVER
      • CREATE STATISTICS
      • CREATE SUBSCRIPTION
      • CREATE TABLE
      • CREATE TABLE AS
      • CREATE TABLESPACE
      • CREATE TRANSFORM
      • CREATE TRIGGER
      • CREATE TYPE
      • CREATE USER
      • CREATE USER MAPPING
      • CREATE VIEW
      • DEALLOCATE
      • DELETE
      • DO
      • DROP ACCESS METHOD
      • DROP DATABASE
      • DROP EXTENSION
      • DROP FUNCTION
      • DROP INDEX
      • DROP LANGUAGE
      • DROP MATERIALIZED VIEW
      • DROP OWNED
      • DROP POLICY
      • DROP PUBLICATION
      • DROP ROLE
      • DROP RULE
      • DROP SCHEMA
      • DROP SEQUENCE
      • DROP STATISTICS
      • DROP SUBSCRIPTION
      • DROP TABLE
      • DROP TABLESPACE
      • DROP TRANSFORM
      • DROP TRIGGER
      • DROP TYPE
      • DROP USER
      • DROP VIEW
      • EXECUTE
      • EXPLAIN
      • GRANT
      • IMPORT FOREIGN SCHEMA
      • INSERT
      • LISTEN
      • LOAD
      • NOTIFY
      • PREPARE
      • PREPARE TRANSACTION
      • REASSIGN OWNED
      • REFRESH MATERIALIZED VIEW
      • REINDEX
      • RESET
      • REVOKE
      • ROLLBACK PREPARED
      • SECURITY LABEL
      • SELECT
      • SELECT INTO
      • SET
      • SET CONSTRAINTS
      • SET ROLE
      • SET SESSION AUTHORIZATION
      • SET TRANSACTION
      • SHOW
      • TRUNCATE
      • UNLISTEN
      • UPDATE
      • VACUUM
      • VALUES
    • II. PostgreSQL 用戶端工具
      • createdb
      • createuser
      • dropdb
      • dropuser
      • oid2name
      • pgbench
      • pg_basebackup
      • pg_dump
      • pg_dumpall
      • pg_isready
      • pg_receivewal
      • pg_recvlogical
      • pg_restore
      • pg_verifybackup
      • psql
      • vacuumdb
    • III. PostgreSQL 伺服器應用程式
      • initdb
      • pg_archivecleanup
      • pg_ctl
      • pg_standby
      • pg_test_timing
      • pg_upgrade
      • postgres
  • VII. 資料庫進階
    • 50. PostgreSQL 的內部架構
      • 50.1. 處理查詢語句的流程
      • 50.2. How Connections Are Established
      • 50.3. The Parser Stage
      • 50.4. The PostgreSQL Rule System
      • 50.5. Planner/Optimizer
      • 50.6. Executor
    • 51. 系統目錄
      • 51.3. pg_am
      • 51.7. pg_attribute
      • 51.8. pg_authid
      • 51.9. pg_auth_members
      • 51.10. pg_cast
      • 51.11 pg_class
      • 51.12. pg_collation
      • 51.13. pg_constraint
      • 51.15 pg_database
      • 51.21. pg_event_trigger
      • 51.22. pg_extension
      • 51.26 pg_index
      • 51.29. pg_language
      • 51.32. pg_namespace
      • 51.33. pg_opclass
      • 51.38. pg_policy
      • 51.39. pg_proc
      • 51.44. pg_rewrite
      • 51.49. pg_statistic
      • 51.50. pg_statistic_ext
      • 51.52. pg_subscription
      • 51.53. pg_subscription_rel
      • 51.54. pg_tablespace
      • 51.56. pg_trigger
      • 51.62. pg_type
      • 51.66. pg_available_extensions
      • 51.67. pg_available_extension_versions
      • 51.71. pg_hba_file_rules
      • 51.72. pg_indexes
      • 51.73. pg_locks
      • 51.77. pg_prepared_xacts
      • 51.79. pg_replication_origin_status
      • 51.80. pg_replication_slots
      • 51.82 pg_roles
      • 51.85. pg_settings
      • 51.87. pg_shmem_allocations
      • 51.88. pg_stats
      • 51.90. pg_tables
      • 51.93. pg_user
      • 51.95. pg_views
    • 52. Frontend/Backend Protocol
      • 52.1. Overview
      • 52.2. Message Flow
      • 52.3. SASL Authentication
      • 52.4. Streaming Replication Protocol
      • 52.5. Logical Streaming Replication Protocol
      • 52.6. Message Data Types
      • 52.7. Message Formats
      • 52.8. Error and Notice Message Fields
      • 52.9. Logical Replication Message Formats
      • 52.10. Summary of Changes since Protocol 2.0
    • 53. PostgreSQL 程式撰寫慣例
      • 53.1. Formatting
      • 53.2. Reporting Errors Within the Server
      • 53.3. Error Message Style Guide
      • 53.4. Miscellaneous Coding Conventions
    • 54. Native Language Support
      • 54.1. For the Translator
      • 54.2. For the Programmer
    • 55. 撰寫程序語言的處理程序
    • 56. Writing a Foreign Data Wrapper
      • 56.1. Foreign Data Wrapper Functions
      • 56.2. Foreign Data Wrapper Callback Routines
      • 56.3. Foreign Data Wrapper Helper Functions
      • 56.4. Foreign Data Wrapper Query Planning
      • 56.5. Row Locking in Foreign Data Wrappers
    • 59. Genetic Query Optimizer
      • 59.1. Query Handling as a Complex Optimization Problem
      • 59.2. Genetic Algorithms
      • 59.3. Genetic Query Optimization (GEQO) in PostgreSQL
      • 59.4. Further Reading
    • 60. Table Access Method Interface Definition
    • 61. Index Access Method Interface Definition
    • 62. Generic WAL Records
    • 64. B-Tree Indexes
      • 64.1. Introduction
      • 64.2. Behavior of B-Tree Operator Classes
      • 64.3. B-Tree Support Functions
      • 64.4. Implementation
    • 64. GiST Indexes
      • 64.1. Introduction
      • 64.2. Built-in Operator Classes
      • 64.3. Extensibility
      • 64.4. Implementation
      • 64.5. Examples
    • 65. SP-GiST Indexes
      • 65.1. Introduction
      • 65.2. Built-in Operator Classes
      • 65.3. Extensibility
      • 65.4. Implementation
      • 65.5. Examples
    • 66. GIN 索引
      • 66.1. 簡介
      • 66.2. 內建運算子類
      • 66.3. 延伸介面
      • 66.4. 實作說明
      • 66.5. GIN 小巧技
      • 66.6. 限制
      • 66.7. 範例
    • 67. BRIN Indexes
      • 67.1. Introduction
      • 67.2. Built-in Operator Classes
      • 67.3. Extensibility
    • 68. 資料庫實體儲存格式
      • 68.1. Database File Layout
      • 68.2. TOAST
      • 68.3. Free Space Map
      • 68.4 可視性映射表(Visibility Map)
      • 68.5. The Initialization Fork
      • 68.6. Database Page Layout
    • 69. System Catalog Declarations and Initial Contents
    • 70. 查詢計畫如何使用統計資訊
      • 70.1. Row Estimation Examples
      • 70.2. 多元統計資訊範例
      • 70.3. Planner Statistics and Security
    • 71. Backup Manifest Format
  • VIII. 附錄
    • A. PostgreSQL 錯誤代碼
    • B. 日期時間格式支援
      • B.1. 日期時間解譯流程
      • B.2. 日期時間慣用字
      • B.3. 日期時間設定檔
      • B.4. 日期時間的沿革
    • C. SQL 關鍵字
    • D. SQL 相容性
      • D.1. Supported Features
      • D.2. Unsupported Features
      • D.3. XML Limits and Conformance to SQL/XML
    • E. 版本資訊
      • E.1. Release 14
    • F. 延伸支援模組
      • F.1. adminpack
      • F.2. amcheck
      • F.3. auth_delay
      • F.4. auto_explain
      • F.5. bloom
      • F.6. btree_gin
      • F.10. dblink
        • dblink_connect
        • dblink_connect_u
        • dblink_disconnect
        • dblink
        • dblink_exec
        • dblink_open
        • dblink_fetch
        • dblink_close
        • dblink_get_connections
        • dblink_error_message
        • dblink_send_query
        • dblink_is_busy
        • dblink_get_notify
        • dblink_get_result
        • dblink_cancel_query
        • dblink_get_pkey
        • dblink_build_sql_insert
        • dblink_build_sql_delete
        • dblink_build_sql_update
      • F.13. earthdistance
      • F.14. file_fdw
      • F.16. hstore
      • F.24. pg_buffercache
      • F.29. pg_stat_statements
      • F.30. pgstattuple
      • F.31. pg_trgm
      • F.32. pg_visibility
      • F.33. postgres_fdw
      • F.35. sepgsql
      • F.38. tablefunc
      • F.40. test_decoding
      • F.41. tsm_system_rows
      • F.42. tsm_system_time
      • F.44. uuid-ossp
    • G. Additional Supplied Programs
      • G.1. Client Applications
        • oid2name
        • vacuumlo
      • G.2. Server Applications
        • pg_standby
    • H. 外部專案
      • H.1. 用戶端介面
      • H.2. Administration Tools
      • H.3. Procedural Languages
      • H.4. Extensions
    • I. The Source Code Repository
      • I.1. Getting The Source via Git
    • J. 文件取得
    • K. PostgreSQL Limits
    • L. 縮寫字
    • M. Glossary
    • N. 色彩支援
      • N.1. When Color is Used
      • N.2. Configuring the Colors
  • 參考書目
Powered by GitBook
On this page
  • Note
  • 38.11.1. Moving-Aggregate Mode
  • 38.11.2. Polymorphic and Variadic Aggregates
  • Note
  • 38.11.3. Ordered-Set Aggregates
  • 38.11.4. Partial Aggregation
  • 38.11.5. Support Functions for Aggregates

Was this helpful?

Edit on GitHub
Export as PDF
  1. V. 資料庫程式設計
  2. 38. SQL 延伸功能

37.12. User-defined Aggregates

版本:11

Aggregate functions in PostgreSQL are defined in terms of state values and state transition functions. That is, an aggregate operates using a state value that is updated as each successive input row is processed. To define a new aggregate function, one selects a data type for the state value, an initial value for the state, and a state transition function. The state transition function takes the previous state value and the aggregate's input value(s) for the current row, and returns a new state value. A final function can also be specified, in case the desired result of the aggregate is different from the data that needs to be kept in the running state value. The final function takes the ending state value and returns whatever is wanted as the aggregate result. In principle, the transition and final functions are just ordinary functions that could also be used outside the context of the aggregate. (In practice, it's often helpful for performance reasons to create specialized transition functions that can only work when called as part of an aggregate.)

Thus, in addition to the argument and result data types seen by a user of the aggregate, there is an internal state-value data type that might be different from both the argument and result types.

If we define an aggregate that does not use a final function, we have an aggregate that computes a running function of the column values from each row. sum is an example of this kind of aggregate. sum starts at zero and always adds the current row's value to its running total. For example, if we want to make a sum aggregate to work on a data type for complex numbers, we only need the addition function for that data type. The aggregate definition would be:

CREATE AGGREGATE sum (complex)
(
    sfunc = complex_add,
    stype = complex,
    initcond = '(0,0)'
);

which we might use like this:

SELECT sum(a) FROM test_complex;

   sum
-----------
 (34,53.9)

(Notice that we are relying on function overloading: there is more than one aggregate named sum, but PostgreSQL can figure out which kind of sum applies to a column of type complex.)

The above definition of sum will return zero (the initial state value) if there are no nonnull input values. Perhaps we want to return null in that case instead — the SQL standard expects sum to behave that way. We can do this simply by omitting the initcond phrase, so that the initial state value is null. Ordinarily this would mean that the sfunc would need to check for a null state-value input. But for sum and some other simple aggregates like max and min, it is sufficient to insert the first nonnull input value into the state variable and then start applying the transition function at the second nonnull input value. PostgreSQL will do that automatically if the initial state value is null and the transition function is marked “strict” (i.e., not to be called for null inputs).

Another bit of default behavior for a “strict” transition function is that the previous state value is retained unchanged whenever a null input value is encountered. Thus, null values are ignored. If you need some other behavior for null inputs, do not declare your transition function as strict; instead code it to test for null inputs and do whatever is needed.

avg (average) is a more complex example of an aggregate. It requires two pieces of running state: the sum of the inputs and the count of the number of inputs. The final result is obtained by dividing these quantities. Average is typically implemented by using an array as the state value. For example, the built-in implementation of avg(float8) looks like:

CREATE AGGREGATE avg (float8)
(
    sfunc = float8_accum,
    stype = float8[],
    finalfunc = float8_avg,
    initcond = '{0,0,0}'
);

Note

float8_accum requires a three-element array, not just two elements, because it accumulates the sum of squares as well as the sum and count of the inputs. This is so that it can be used for some other aggregates as well as avg.

Aggregate function calls in SQL allow DISTINCT and ORDER BY options that control which rows are fed to the aggregate's transition function and in what order. These options are implemented behind the scenes and are not the concern of the aggregate's support functions.

38.11.1. Moving-Aggregate Mode

The inverse transition function is passed the current state value and the aggregate input value(s) for the earliest row included in the current state. It must reconstruct what the state value would have been if the given input row had never been aggregated, but only the rows following it. This sometimes requires that the forward transition function keep more state than is needed for plain aggregation mode. Therefore, the moving-aggregate mode uses a completely separate implementation from the plain mode: it has its own state data type, its own forward transition function, and its own final function if needed. These can be the same as the plain mode's data type and functions, if there is no need for extra state.

As an example, we could extend the sum aggregate given above to support moving-aggregate mode like this:

CREATE AGGREGATE sum (complex)
(
    sfunc = complex_add,
    stype = complex,
    initcond = '(0,0)',
    msfunc = complex_add,
    minvfunc = complex_sub,
    mstype = complex,
    minitcond = '(0,0)'
);

The parameters whose names begin with m define the moving-aggregate implementation. Except for the inverse transition function minvfunc, they correspond to the plain-aggregate parameters without m.

The forward transition function for moving-aggregate mode is not allowed to return null as the new state value. If the inverse transition function returns null, this is taken as an indication that the inverse function cannot reverse the state calculation for this particular input, and so the aggregate calculation will be redone from scratch for the current frame starting position. This convention allows moving-aggregate mode to be used in situations where there are some infrequent cases that are impractical to reverse out of the running state value. The inverse transition function can “punt” on these cases, and yet still come out ahead so long as it can work for most cases. As an example, an aggregate working with floating-point numbers might choose to punt when a NaN (not a number) input has to be removed from the running state value.

When writing moving-aggregate support functions, it is important to be sure that the inverse transition function can reconstruct the correct state value exactly. Otherwise there might be user-visible differences in results depending on whether the moving-aggregate mode is used. An example of an aggregate for which adding an inverse transition function seems easy at first, yet where this requirement cannot be met is sum over float4 or float8 inputs. A naive declaration of sum(float8) could be

CREATE AGGREGATE unsafe_sum (float8)
(
    stype = float8,
    sfunc = float8pl,
    mstype = float8,
    msfunc = float8pl,
    minvfunc = float8mi
);

This aggregate, however, can give wildly different results than it would have without the inverse transition function. For example, consider

SELECT
  unsafe_sum(x) OVER (ORDER BY n ROWS BETWEEN CURRENT ROW AND 1 FOLLOWING)
FROM (VALUES (1, 1.0e20::float8),
             (2, 1.0::float8)) AS v (n,x);

This query returns 0 as its second result, rather than the expected answer of 1. The cause is the limited precision of floating-point values: adding 1 to 1e20 results in 1e20 again, and so subtracting 1e20 from that yields 0, not 1. Note that this is a limitation of floating-point arithmetic in general, not a limitation of PostgreSQL.

38.11.2. Polymorphic and Variadic Aggregates

CREATE AGGREGATE array_accum (anyelement)
(
    sfunc = array_append,
    stype = anyarray,
    initcond = '{}'
);

Here, the actual state type for any given aggregate call is the array type having the actual input type as elements. The behavior of the aggregate is to concatenate all the inputs into an array of that type. (Note: the built-in aggregate array_agg provides similar functionality, with better performance than this definition would have.)

Here's the output using two different actual data types as arguments:

SELECT attrelid::regclass, array_accum(attname)
    FROM pg_attribute
    WHERE attnum > 0 AND attrelid = 'pg_tablespace'::regclass
    GROUP BY attrelid;

   attrelid    |              array_accum              
---------------+---------------------------------------
 pg_tablespace | {spcname,spcowner,spcacl,spcoptions}
(1 row)

SELECT attrelid::regclass, array_accum(atttypid::regtype)
    FROM pg_attribute
    WHERE attnum > 0 AND attrelid = 'pg_tablespace'::regclass
    GROUP BY attrelid;

   attrelid    |        array_accum        
---------------+---------------------------
 pg_tablespace | {name,oid,aclitem[],text[]}
(1 row)

Ordinarily, an aggregate function with a polymorphic result type has a polymorphic state type, as in the above example. This is necessary because otherwise the final function cannot be declared sensibly: it would need to have a polymorphic result type but no polymorphic argument type, which CREATE FUNCTION will reject on the grounds that the result type cannot be deduced from a call. But sometimes it is inconvenient to use a polymorphic state type. The most common case is where the aggregate support functions are to be written in C and the state type should be declared as internalbecause there is no SQL-level equivalent for it. To address this case, it is possible to declare the final function as taking extra “dummy” arguments that match the input arguments of the aggregate. Such dummy arguments are always passed as null values since no specific value is available when the final function is called. Their only use is to allow a polymorphic final function's result type to be connected to the aggregate's input type(s). For example, the definition of the built-in aggregate array_agg is equivalent to

CREATE FUNCTION array_agg_transfn(internal, anynonarray)
  RETURNS internal ...;
CREATE FUNCTION array_agg_finalfn(internal, anynonarray)
  RETURNS anyarray ...;

CREATE AGGREGATE array_agg (anynonarray)
(
    sfunc = array_agg_transfn,
    stype = internal,
    finalfunc = array_agg_finalfn,
    finalfunc_extra
);

Here, the finalfunc_extra option specifies that the final function receives, in addition to the state value, extra dummy argument(s) corresponding to the aggregate's input argument(s). The extra anynonarray argument allows the declaration of array_agg_finalfn to be valid.

Note

SELECT myaggregate(a ORDER BY a, b, c) FROM ...

the parser will see this as a single aggregate function argument and three sort keys. However, the user might have intended

SELECT myaggregate(a, b, c ORDER BY a) FROM ...

If myaggregate is variadic, both these calls could be perfectly valid.

For the same reason, it's wise to think twice before creating aggregate functions with the same names and different numbers of regular arguments.

38.11.3. Ordered-Set Aggregates

The aggregates we have been describing so far are “normal” aggregates. PostgreSQL also supports ordered-set aggregates, which differ from normal aggregates in two key ways. First, in addition to ordinary aggregated arguments that are evaluated once per input row, an ordered-set aggregate can have “direct” arguments that are evaluated only once per aggregation operation. Second, the syntax for the ordinary aggregated arguments specifies a sort ordering for them explicitly. An ordered-set aggregate is usually used to implement a computation that depends on a specific row ordering, for instance rank or percentile, so that the sort ordering is a required aspect of any call. For example, the built-in definition of percentile_disc is equivalent to:

CREATE FUNCTION ordered_set_transition(internal, anyelement)
  RETURNS internal ...;
CREATE FUNCTION percentile_disc_final(internal, float8, anyelement)
  RETURNS anyelement ...;

CREATE AGGREGATE percentile_disc (float8 ORDER BY anyelement)
(
    sfunc = ordered_set_transition,
    stype = internal,
    finalfunc = percentile_disc_final,
    finalfunc_extra
);

This aggregate takes a float8 direct argument (the percentile fraction) and an aggregated input that can be of any sortable data type. It could be used to obtain a median household income like this:

SELECT percentile_disc(0.5) WITHIN GROUP (ORDER BY income) FROM households;
 percentile_disc
-----------------
           50489

Here, 0.5 is a direct argument; it would make no sense for the percentile fraction to be a value varying across rows.

The state transition function for an ordered-set aggregate receives the current state value plus the aggregated input values for each row, and returns the updated state value. This is the same definition as for normal aggregates, but note that the direct arguments (if any) are not provided. The final function receives the last state value, the values of the direct arguments if any, and (if finalfunc_extrais specified) null values corresponding to the aggregated input(s). As with normal aggregates, finalfunc_extra is only really useful if the aggregate is polymorphic; then the extra dummy argument(s) are needed to connect the final function's result type to the aggregate's input type(s).

Currently, ordered-set aggregates cannot be used as window functions, and therefore there is no need for them to support moving-aggregate mode.

38.11.4. Partial Aggregation

Optionally, an aggregate function can support partial aggregation. The idea of partial aggregation is to run the aggregate's state transition function over different subsets of the input data independently, and then to combine the state values resulting from those subsets to produce the same state value that would have resulted from scanning all the input in a single operation. This mode can be used for parallel aggregation by having different worker processes scan different portions of a table. Each worker produces a partial state value, and at the end those state values are combined to produce a final state value. (In the future this mode might also be used for purposes such as combining aggregations over local and remote tables; but that is not implemented yet.)

To support partial aggregation, the aggregate definition must provide a combine function, which takes two values of the aggregate's state type (representing the results of aggregating over two subsets of the input rows) and produces a new value of the state type, representing what the state would have been after aggregating over the combination of those sets of rows. It is unspecified what the relative order of the input rows from the two sets would have been. This means that it's usually impossible to define a useful combine function for aggregates that are sensitive to input row order.

As simple examples, MAX and MIN aggregates can be made to support partial aggregation by specifying the combine function as the same greater-of-two or lesser-of-two comparison function that is used as their transition function. SUM aggregates just need an addition function as combine function. (Again, this is the same as their transition function, unless the state value is wider than the input data type.)

The combine function is treated much like a transition function that happens to take a value of the state type, not of the underlying input type, as its second argument. In particular, the rules for dealing with null values and strict functions are similar. Also, if the aggregate definition specifies a non-null initcond, keep in mind that that will be used not only as the initial state for each partial aggregation run, but also as the initial state for the combine function, which will be called to combine each partial result into that state.

If the aggregate's state type is declared as internal, it is the combine function's responsibility that its result is allocated in the correct memory context for aggregate state values. This means in particular that when the first input is NULL it's invalid to simply return the second input, as that value will be in the wrong context and will not have sufficient lifespan.

When the aggregate's state type is declared as internal, it is usually also appropriate for the aggregate definition to provide a serialization function and a deserialization function, which allow such a state value to be copied from one process to another. Without these functions, parallel aggregation cannot be performed, and future applications such as local/remote aggregation will probably not work either.

A serialization function must take a single argument of type internal and return a result of type bytea, which represents the state value packaged up into a flat blob of bytes. Conversely, a deserialization function reverses that conversion. It must take two arguments of types bytea and internal, and return a result of type internal. (The second argument is unused and is always zero, but it is required for type-safety reasons.) The result of the deserialization function should simply be allocated in the current memory context, as unlike the combine function's result, it is not long-lived.

Worth noting also is that for an aggregate to be executed in parallel, the aggregate itself must be marked PARALLEL SAFE. The parallel-safety markings on its support functions are not consulted.

38.11.5. Support Functions for Aggregates

A function written in C can detect that it is being called as an aggregate support function by calling AggCheckCallContext, for example:

if (AggCheckCallContext(fcinfo, NULL))

Another support routine available to aggregate functions written in C is AggGetAggref, which returns the Aggref parse node that defines the aggregate call. This is mainly useful for ordered-set aggregates, which can inspect the substructure of the Aggref node to find out what sort ordering they are supposed to implement. Examples can be found in orderedsetaggs.c in the PostgreSQLsource code.

Previous37.11. Function Optimization InformationNext37.13. User-defined Types

Last updated 3 years ago

Was this helpful?

For further details see the command.

Aggregate functions can optionally support moving-aggregate mode, which allows substantially faster execution of aggregate functions within windows with moving frame starting points. (See and for information about use of aggregate functions as window functions.) The basic idea is that in addition to a normal “forward” transition function, the aggregate provides an inverse transition function, which allows rows to be removed from the aggregate's running state value when they exit the window frame. For example a sum aggregate, which uses addition as the forward transition function, would use subtraction as the inverse transition function. Without an inverse transition function, the window function mechanism must recalculate the aggregate from scratch each time the frame starting point moves, resulting in run time proportional to the number of input rows times the average frame length. With an inverse transition function, the run time is only proportional to the number of input rows.

Aggregate functions can use polymorphic state transition functions or final functions, so that the same functions can be used to implement multiple aggregates. See for an explanation of polymorphic functions. Going a step further, the aggregate function itself can be specified with polymorphic input type(s) and state type, allowing a single aggregate definition to serve for multiple input data types. Here is an example of a polymorphic aggregate:

An aggregate function can be made to accept a varying number of arguments by declaring its last argument as a VARIADIC array, in much the same fashion as for regular functions; see . The aggregate's transition function(s) must have the same array type as their last argument. The transition function(s) typically would also be marked VARIADIC, but this is not strictly required.

Variadic aggregates are easily misused in connection with the ORDER BY option (see), since the parser cannot tell whether the wrong number of actual arguments have been given in such a combination. Keep in mind that everything to the right of ORDER BY is a sort key, not an argument to the aggregate. For example, in

Unlike the case for normal aggregates, the sorting of input rows for an ordered-set aggregate is not done behind the scenes, but is the responsibility of the aggregate's support functions. The typical implementation approach is to keep a reference to a “tuplesort” object in the aggregate's state value, feed the incoming rows into that object, and then complete the sorting and read out the data in the final function. This design allows the final function to perform special operations such as injecting additional “hypothetical” rows into the data to be sorted. While normal aggregates can often be implemented with support functions written in PL/pgSQL or another PL language, ordered-set aggregates generally have to be written in C, since their state values aren't definable as any SQL data type. (In the above example, notice that the state value is declared as type internal — this is typical.) Also, because the final function performs the sort, it is not possible to continue adding input rows by executing the transition function again later. This means the final function is not READ_ONLY; it must be declared in as READ_WRITE, or as SHAREABLE if it's possible for additional final-function calls to make use of the already-sorted state.

One reason for checking this is that when it is true, the first input must be a temporary state value and can therefore safely be modified in-place rather than allocating a new copy. See int8inc() for an example. (While aggregate transition functions are always allowed to modify the transition value in-place, aggregate final functions are generally discouraged from doing so; if they do so, the behavior must be declared when creating the aggregate. See for more detail.)

The second argument of AggCheckCallContext can be used to retrieve the memory context in which aggregate state values are being kept. This is useful for transition functions that wish to use“expanded” objects (see ) as their state values. On first call, the transition function should return an expanded object whose memory context is a child of the aggregate state context, and then keep returning the same expanded object on subsequent calls. See array_append() for an example. (array_append() is not the transition function of any built-in aggregate, but it is written to behave efficiently when used as transition function of a custom aggregate.)

CREATE AGGREGATE
Section 3.5
Section 4.2.8
Section 38.2.5
Section 38.5.5
Section 4.2.7
CREATE AGGREGATE
CREATE AGGREGATE
Section 38.12.1