PostgreSQL 正體中文使用手冊
PostgreSQL.TW官方使用手冊小島故事加入社團
15
15
  • 簡介
  • 前言
    • 1. 什麼是 PostgreSQL?
    • 2. PostgreSQL 沿革
    • 3. 慣例
    • 4. 其他參考資訊
    • 5. 問題回報指南
  • I. 新手教學
    • 1. 入門指南
      • 1.1. 安裝
      • 1.2. 基礎架構
      • 1.3. 建立一個資料庫
      • 1.4. 存取一個資料庫
    • 2. SQL 查詢語言
      • 2.1. 簡介
      • 2.2. 概念
      • 2.3. 創建一個新的資料表
      • 2.4. 資料列是資料表的組成單位
      • 2.5. 資料表的查詢
      • 2.6. 交叉查詢
      • 2.7. 彙總查詢
      • 2.8. 更新資料
      • 2.9. 刪除資料
    • 3. 先進功能
      • 3.1. 簡介
      • 3.2. 檢視表(View)
      • 3.3. 外部索引鍵
      • 3.4. 交易安全
      • 3.5. 窗函數
      • 3.6. 繼承
      • 3.7. 結論
  • II. SQL 查詢語言
    • 4. SQL 語法
      • 4.1. 語法結構
      • 4.2. 參數表示式
      • 4.3. 函數呼叫
    • 5. 定義資料結構
      • 5.1. 認識資料表
      • 5.2. 預設值
      • 5.3. Generated Columns
      • 5.4. 限制條件
      • 5.5. 系統欄位
      • 5.6. 表格變更
      • 5.7. 權限
      • 5.8. 資料列安全原則
      • 5.9. Schemas
      • 5.10. 繼承
      • 5.11. 分割資料表
      • 5.12. 外部資料
      • 5.13. 其他資料庫物件
      • 5.14. 相依性追蹤
    • 6. 資料處理
      • 6.1. 新增資料
      • 6.2. 更新資料
      • 6.3. 刪除資料
      • 6.4. 修改並回傳資料
    • 7. 資料查詢
      • 7.1. 概觀
      • 7.2. 資料表表示式
      • 7.3. 取得資料列表
      • 7.4. 合併查詢結果
      • 7.5. 資料排序
      • 7.6. LIMIT 和 OFFSET
      • 7.7. VALUES 列舉資料
      • 7.8. WITH Querys(Common Table Expressions)
    • 8. 資料型別
      • 8.1. 數字型別
      • 8.2. 貨幣型別
      • 8.3. 字串型別
      • 8.4. 位元組型別(bytea)
      • 8.5. 日期時間型別
      • 8.6. 布林型別
      • 8.7. 列舉型別
      • 8.8. 地理資訊型別
      • 8.9. 網路資訊型別
      • 8.10. 位元字串型別
      • 8.11. 全文檢索型別
      • 8.12. UUID 型別
      • 8.13. XML 型別
      • 8.14. JSON 型別
      • 8.15. 陣列
      • 8.16. 複合型別
      • 8.17. 範圍型別
      • 8.18. Domain Types
      • 8.19. 物件指標型別
      • 8.20. pg_lsn 型別
      • 8.21. 概念型別
    • 9. 函式及運算子
      • 9.1. 邏輯運算子
      • 9.2. 比較函式及運算子
      • 9.3. 數學函式及運算子
      • 9.4. 字串函式及運算子
      • 9.5. 位元字串函式及運算子
      • 9.6. 二元字串函式及運算子
      • 9.7. 特徵比對
      • 9.8. 型別轉換函式
      • 9.9 日期時間函式及運算子
      • 9.10. 列舉型別函式
      • 9.11. 地理資訊函式及運算子
      • 9.12. 網路位址函式及運算子
      • 9.13. 文字檢索函式及運算子
      • 9.14. UUID Functions
      • 9.15. XML 函式
      • 9.16. JSON 函式及運算子
      • 9.17. 序列函式
      • 9.18. 條件表示式
      • 9.19. 陣列函式及運算子
      • 9.20. 範圍函式及運算子
      • 9.21. 彙總函數
      • 9.22. Window 函式
      • 9.23. 子查詢
      • 9.24. 資料列與陣列的比較運算
      • 9.25. 集合回傳函數
      • 9.26. 系統資訊函數
      • 9.27. 系統管理函式
      • 9.28. 觸發函式
      • 9.29. 事件觸發函式
      • 9.30. Statistics Information Functions
    • 10. 型別轉換
      • 10.1. 概觀
      • 10.2. 運算子
      • 10.3. 函式
      • 10.4. 資料儲存轉換規則
      • 10.5. UNION、CASE 等相關結構
      • 10.6. SELECT 輸出規則
    • 11. 索引(Index)
      • 11.1. 簡介
      • 11.2. 索引型別
      • 11.3. 多欄位索引
      • 11.4. 索引與 ORDER BY
      • 11.5. 善用多個索引
      • 11.6. 唯一值索引
      • 11.7. 表示式索引
      • 11.8. 部份索引(partial index)
      • 11.9. Index-Only Scans and Covering Indexes
      • 11.10. 運算子物件及家族
      • 11.11. 索引與排序規則
      • 11.12. 檢查索引運用
    • 12. 全文檢索
      • 12.1. 簡介
      • 12.2. 查詢與索引
      • 12.3. 細部控制
      • 12.4. 延伸功能
      • 12.5. 斷詞
      • 12.6. 字典
      • 12.7. 組態範例
      • 12.8. 測試與除錯
      • 12.9. GIN 及 GiST 索引型別
      • 12.10. psql支援
      • 12.11. 功能限制
    • 13. 一致性管理(Concurrency Control)
      • 13.1. 簡介
      • 13.2. 交易隔離
      • 13.3. 鎖定模式
      • 13.4. 在應用端檢視資料一致性
      • 13.5. Serialization Failure Handling
      • 13.6. 特別提醒
      • 13.7. 鎖定與索引
    • 14. 效能技巧
      • 14.1. 善用 EXPLAIN
      • 14.2. 統計資訊
      • 14.3. 使用確切的 JOIN 方式
      • 14.4. 快速建立資料庫內容
      • 14.5. 風險性彈性設定
    • 15. 平行查詢
      • 15.1. 如何運作?
      • 15.2. 啓用時機?
      • 15.3. 平行查詢計畫
      • 15.4. 平行查詢的安全性
  • III. 系統管理
    • 16. 以預編譯套件安裝
    • 17. 以原始碼安裝
      • 17.1. 簡要步驟
      • 17.2. 環境需求
      • 17.3. Getting The Source
      • 17.4. 安裝流程
      • 17.5. Post-Installation Setup
      • 17.6. Supported Platforms
      • 17.7. 平台相關的注意事項
    • 18. 以原始碼在 Windows 上安裝
      • 18.1. Building with Visual C++ or the Microsoft Windows SDK
    • 19. 服務配置與維運
      • 19.1. PostgreSQL 使用者帳號
      • 19.2. Creating a Database Cluster
      • 19.3. Starting the Database Server
      • 19.4. 核心資源管理
      • 19.5. Shutting Down the Server
      • 19.6. Upgrading a PostgreSQL Cluster
      • 19.7. Preventing Server Spoofing
      • 19.8. Encryption Options
      • 19.9. Secure TCP/IP Connections with SSL
      • 19.10. Secure TCP/IP Connections with GSSAPI Encryption
      • 19.11. Secure TCP/IP Connections with SSH Tunnels
      • 19.12. 在 Windows 註冊事件日誌
    • 20. 服務組態設定
      • 20.1. Setting Parameters
      • 20.2. File Locations
      • 20.3. 連線與認證
      • 20.4. 資源配置
      • 20.5. Write Ahead Log
      • 20.6. 複寫(Replication)
      • 20.7. 查詢規畫
      • 20.8. 錯誤回報與日誌記錄
      • 20.9. 執行階段統計資訊
      • 20.10. 自動資料庫清理
      • 20.11. 用戶端連線預設參數
      • 20.12. 交易鎖定管理
      • 20.13. 版本與平台的相容性
      • 20.14. Error Handling
      • 20.15. 預先配置的參數
      • 20.16. Customized Options
      • 20.17. Developer Options
      • 20.18. Short Options
    • 21. 使用者認證
      • 21.1. 設定檔:pg_hba.conf
      • 21.2. User Name Maps
      • 21.3. Authentication Methods
      • 21.4. Trust Authentication
      • 21.5. Password Authentication
      • 21.6. GSSAPI Authentication
      • 21.7. SSPI Authentication
      • 21.8. Ident Authentication
      • 21.9. Peer Authentication
      • 21.10. LDAP Authentication
      • 21.11. RADIUS Authentication
      • 21.12. Certificate Authentication
      • 21.13. PAM Authentication
      • 21.14. BSD Authentication
      • 21.15. Authentication Problems
    • 22. 資料庫角色
      • 22.1. Database Roles
      • 22.2. Role Attributes
      • 22.3. Role Membership
      • 22.4. 移除角色
      • 22.5. Default Roles
      • 22.6. Function Security
    • 23. 管理資料庫
      • 23.1. Overview
      • 23.2. Creating a Database
      • 23.3. 樣版資料庫
      • 23.4. Database Configuration
      • 23.5. Destroying a Database
      • 23.6. Tablespaces
    • 24. 語系
      • 24.1. 語系支援
      • 24.2. Collation Support
      • 24.3. 字元集支援
    • 25. 例行性資料庫維護工作
      • 25.1. 例行性資料清理
      • 25.2. 定期重建索引
      • 25.3. Log 檔案維護
    • 26. 備份及還原
      • 26.1. SQL Dump
      • 26.2. 檔案系統層級備份
      • 26.3. 持續封存及 Point-in-Time Recovery (PITR)
    • 27. High Availability, Load Balancing, and Replication
      • 27.1. 比較不同的解決方案
      • 27.2. 日誌轉送備用伺服器 Log-Shipping Standby Servers
      • 27.3. Failover
      • 27.4. Hot Standby
    • 28. 監控資料庫活動
      • 28.1. 標準的 Unix 工具
      • 28.2. 統計資訊收集器
      • 28.3. Viewing Locks
      • 28.4. Progress Reporting
      • 28.5. Dynamic Tracing
    • 29. 監控磁碟使用情況
      • 29.1. 瞭解磁碟使用情形
      • 29.2. 磁碟空間不足錯誤
    • 30. 高可靠度及預寫日誌
      • 30.1. 可靠度
      • 30.2. Data Checksums
      • 30.3. Write-Ahead Logging(WAL)
      • 30.4. Asynchronous Commit
      • 30.5. WAL Configuration
      • 30.6. WAL Internals
    • 31. 邏輯複寫(Logical Replication)
      • 31.1. 發佈(Publication)
      • 31.2. 訂閱(Subscription)
      • 31.3. Row Filters
      • 31.4. Column Lists
      • 31.5. 衝突處理
      • 31.6. 限制
      • 31.7. 架構
      • 31.8. 監控
      • 31.9. 安全性
      • 31.10. 系統設定
      • 31.11. 快速設定
    • 32. Just-in-Time Compilation(JIT)
      • 32.1. What is JIT compilation?
      • 32.2. When to JIT?
      • 32.3. Configuration
      • 32.4. Extensibility
    • 33. 迴歸測試
      • 33.1. Running the Tests
      • 33.2. Test Evaluation
      • 33.3. Variant Comparison Files
      • 33.4. TAP Tests
      • 33.5. Test Coverage Examination
  • IV. 用戶端介面
    • 34. libpq - C Library
      • 33.1. 資料庫連線控制函數
      • 33.2. 連線狀態函數
      • 33.3. Command Execution Functions
      • 33.4. Asynchronous Command Processing
      • 33.5. Retrieving Query Results Row-By-Row
      • 33.6. Canceling Queries in Progress
      • 33.7. The Fast-Path Interface
      • 33.8. Asynchronous Notification
      • 33.9. Functions Associated with the COPY Command
      • 33.10. Control Functions
      • 33.11. Miscellaneous Functions
      • 33.12. Notice Processing
      • 33.13. Event System
      • 33.14. 環境變數
      • 34.16. 密碼檔
      • 33.16. The Connection Service File
      • 33.17. LDAP Lookup of Connection Parameters
      • 33.18. SSL Support
      • 33.19. Behavior in Threaded Programs
      • 33.20. Building libpq Programs
      • 33.21. Example Programs
    • 35. Large Objects
      • 35.1. Introduction
      • 35.2. Implementation Features
      • 35.3. Client Interfaces
      • 35.4. Server-side Functions
      • 35.5. Example Program
    • 36. ECPG - Embedded SQL in C
      • 35.1. The Concept
      • 35.2. Managing Database Connections
      • 35.3. Running SQL Commands
      • 35.4. Using Host Variables
      • 35.5. Dynamic SQL
      • 35.6. pgtypes Library
      • 35.7. Using Descriptor Areas
      • 35.8. Error Handling
      • 35.9. Preprocessor Directives
      • 35.10. Processing Embedded SQL Programs
      • 35.11. Library Functions
      • 35.12. Large Objects
      • 35.13. C++ Applications
      • 35.14. Embedded SQL Commands
      • 35.15. Informix Compatibility Mode
      • 35.16. Internals
    • 37. The Information Schema
      • 37.1. The Schema
      • 37.2. Data Types
      • 37.3. information_schema_catalog_name
      • 37.4. administrable_role_authorizations
      • 37.5. applicable_roles
      • 37.7. attributes
      • 37.7. character_sets
      • 37.8. check_constraint_routine_usage
      • 37.9. check_constraints
      • 37.10. collations
      • 37.11. collation_character_set_applicability
      • 37.12. column_column_usage
      • 37.13. column_domain_usage
      • 37.14. column_options
      • 37.15. column_privileges
      • 37.16. column_udt_usage
      • 37.17. columns
      • 37.18. constraint_column_usage
      • 37.19. constraint_table_usage
      • 37.20. data_type_privileges
      • 37.21. domain_constraints
      • 37.21. domain_udt_usage
      • 37.22. domains
      • 37.23. element_types
      • 37.24. enabled_roles
      • 37.25. foreign_data_wrapper_options
      • 37.26. foreign_data_wrappers
      • 37.27. foreign_server_options
      • 37.28. foreign_servers
      • 37.29. foreign_table_options
      • 37.30. foreign_tables
      • 36.32. key_column_usage
      • 37.33. parameters
      • 36.34. referential_constraints
      • 37.34. role_column_grants
      • 37.35. role_routine_grants
      • 37.37. role_table_grants
      • 37.38. role_udt_grants
      • 37.39. role_usage_grants
      • 37.40. routine_column_usage
      • 37.41. routine_privileges
      • 37.45. routines
      • 37.46. schemata
      • 37.47. sequences
      • 37.48. sql_features
      • 37.49. sql_implementation_info
      • 37.50. sql_parts
      • 37.51. sql_sizing
      • 36.51. table_constraints
      • 36.49. table_privileges
      • 37.52. tables
      • 37.53. transforms
      • 37.54. triggered_update_columns
      • 37.55. triggers
      • 37.56. udt_privileges
      • 37.57. usage_privileges
      • 37.58. user_defined_types
      • 37.59. user_mapping_options
      • 37.60. user_mappings
      • 37.63. view_column_usage
      • 37.64. view_routine_usage
      • 37.65. view_table_usage
      • 37.66. views
  • V. 資料庫程式設計
    • 38. SQL 延伸功能
      • 38.1. How Extensibility Works
      • 38.2. The PostgreSQL Type System
      • 38.3. 使用者自訂函數
      • 38.4. User-defined Procedures
      • 38.5. Query Language (SQL) Functions
      • 38.6. Function Overloading
      • 38.7. 函數易變性類別
      • 38.8. Procedural Language Functions
      • 38.9. Internal Functions
      • 38.10. C-Language Functions
      • 38.11. Function Optimization Information
      • 38.12. User-defined Aggregates
      • 38.13. User-defined Types
      • 38.14. User-defined Operators
      • 38.15. Operator Optimization Information
      • 38.16. Interfacing Extensions To Indexes
      • 38.17. 封裝相關物件到延伸功能中
      • 38.18. Extension Building Infrastructure
    • 39. Triggers
      • 39.1. Overview of Trigger Behavior
      • 39.2. Visibility of Data Changes
      • 39.3. Writing Trigger Functions in C
      • 39.4. A Complete Trigger Example
    • 40. Event Triggers (事件觸發)
      • 40.1. Overview of Event Trigger Behavior
      • 40.2. Event Trigger Firing Matrix
      • 40.3. Writing Event Trigger Functions in C
      • 40.4. A Complete Event Trigger Example
    • 41. 規則系統
      • 41.1. The Query Tree
      • 41.2. Views and the Rule System
      • 41.3. Materialized Views
      • 41.4. Rules on INSERT, UPDATE, and DELETE
      • 41.5. 規則及權限
      • 41.6. Rules and Command Status
      • 41.7. Rules Versus Triggers
    • 42. Procedural Languages(程序語言)
      • 42.1. Installing Procedural Languages
    • 43. PL/pgSQL - SQL Procedural Language
      • 43.1. Overview
      • 43.2. Structure of PL/pgSQL
      • 43.3. Declarations
      • 43.4. Expressions
      • 43.5. 基本語法
      • 43.6. Control Structures
      • 43.7. Cursors
      • 43.8. Transaction Management
      • 43.9. Errors and Messages
      • 43.10. Trigger Functions
      • 43.11. PL/pgSQL under the Hood
      • 43.12. Tips for Developing in PL/pgSQL
      • 43.13. Porting from Oracle PL/SQL
    • 44. PL/Tcl - Tcl Procedural Language
    • 45. PL/Perl — Perl Procedural Language
    • 46. PL/Python - Python Procedural Language
      • 46.1. PL/Python Functions
      • 46.2. Data Values
      • 46.3. Sharing Data
      • 46.4. Anonymous Code Blocks
      • 46.5. Trigger Functions
      • 46.6. Database Access
      • 46.7. Explicit Subtransactions
      • 46.8. Transaction Management
      • 46.9. Utility Functions
      • 46.10. Python 2 vs. Python 3
      • 46.11. Environment Variables
    • 47. Server Programming Interface
    • 48. Background Worker Processes
    • 49. Logical Decoding
      • 48.1. Logical Decoding Examples
      • 48.2. Logical Decoding Concepts
      • 48.3. Streaming Replication Protocol Interface
      • 48.4. Logical Decoding SQL Interface
      • 48.5. System Catalogs Related to Logical Decoding
      • 48.6. Logical Decoding Output Plugins
      • 48.7. Logical Decoding Output Writers
      • 48.8. Synchronous Replication Support for Logical Decoding
    • 50. Replication Progress Tracking
    • 51. Archive Modules
      • 51.1. Initialization Functions
      • 51.2. Archive Module Callbacks
  • VI. 參考資訊
    • I. SQL 指令
      • ALTER DATABASE
      • ALTER DEFAULT PRIVILEGES
      • ALTER EXTENSION
      • ALTER FUNCTION
      • ALTER INDEX
      • ALTER LANGUAGE
      • ALTER MATERIALIZED VIEW
      • ALTER POLICY
      • ALTER PUBLICATION
      • ALTER ROLE
      • ALTER RULE
      • ALTER SCHEMA
      • ALTER SEQUENCE
      • ALTER STATISTICS
      • ALTER SUBSCRIPTION
      • ALTER SYSTEM
      • ALTER TABLE
      • ALTER TABLESPACE
      • ALTER TRIGGER
      • ALTER TYPE
      • ALTER USER
      • ALTER VIEW
      • ANALYZE
      • CLUSTER
      • COMMENT
      • COMMIT PREPARED
      • COPY
      • CREATE ACCESS METHOD
      • CREATE CAST
      • CREATE DATABASE
      • CREATE EVENT TRIGGER
      • CREATE EXTENSION
      • CREATE FOREIGN TABLE
      • CREATE FOREIGN DATA WRAPPER
      • CREATE FUNCTION
      • CREATE INDEX
      • CREATE LANGUAGE
      • CREATE MATERIALIZED VIEW
      • CREATE DOMAIN
      • CREATE POLICY
      • CREATE PROCEDURE
      • CREATE PUBLICATION
      • CREATE ROLE
      • CREATE RULE
      • CREATE SCHEMA
      • CREATE SEQUENCE
      • CREATE SERVER
      • CREATE STATISTICS
      • CREATE SUBSCRIPTION
      • CREATE TABLE
      • CREATE TABLE AS
      • CREATE TABLESPACE
      • CREATE TRANSFORM
      • CREATE TRIGGER
      • CREATE TYPE
      • CREATE USER
      • CREATE USER MAPPING
      • CREATE VIEW
      • DEALLOCATE
      • DELETE
      • DO
      • DROP ACCESS METHOD
      • DROP DATABASE
      • DROP EXTENSION
      • DROP FUNCTION
      • DROP INDEX
      • DROP LANGUAGE
      • DROP MATERIALIZED VIEW
      • DROP OWNED
      • DROP POLICY
      • DROP PUBLICATION
      • DROP ROLE
      • DROP RULE
      • DROP SCHEMA
      • DROP SEQUENCE
      • DROP STATISTICS
      • DROP SUBSCRIPTION
      • DROP TABLE
      • DROP TABLESPACE
      • DROP TRANSFORM
      • DROP TRIGGER
      • DROP TYPE
      • DROP USER
      • DROP VIEW
      • EXECUTE
      • EXPLAIN
      • GRANT
      • IMPORT FOREIGN SCHEMA
      • INSERT
      • LISTEN
      • LOAD
      • MERGE
      • NOTIFY
      • PREPARE
      • PREPARE TRANSACTION
      • REASSIGN OWNED
      • REFRESH MATERIALIZED VIEW
      • REINDEX
      • RESET
      • REVOKE
      • ROLLBACK PREPARED
      • SECURITY LABEL
      • SELECT
      • SELECT INTO
      • SET
      • SET CONSTRAINTS
      • SET ROLE
      • SET SESSION AUTHORIZATION
      • SET TRANSACTION
      • SHOW
      • TRUNCATE
      • UNLISTEN
      • UPDATE
      • VACUUM
      • VALUES
    • II. PostgreSQL 用戶端工具
      • createdb
      • createuser
      • dropdb
      • dropuser
      • oid2name
      • pgbench
      • pg_basebackup
      • pg_dump
      • pg_dumpall
      • pg_isready
      • pg_receivewal
      • pg_recvlogical
      • pg_restore
      • pg_verifybackup
      • psql
      • vacuumdb
    • III. PostgreSQL 伺服器應用程式
      • initdb
      • pg_archivecleanup
      • pg_ctl
      • pg_standby
      • pg_test_fsync
      • pg_test_timing
      • pg_upgrade
      • postgres
  • VII. 資料庫進階
    • 52. PostgreSQL 的內部架構
      • 52.1. 處理查詢語句的流程
      • 52.2. How Connections Are Established
      • 52.3. The Parser Stage
      • 52.4. The PostgreSQL Rule System
      • 52.5. Planner/Optimizer
      • 52.6. Executor
    • 53. 系統資訊目錄
      • 51.3. pg_am
      • 51.7. pg_attribute
      • 51.8. pg_authid
      • 51.9. pg_auth_members
      • 51.10. pg_cast
      • 51.11 pg_class
      • 51.12. pg_collation
      • 51.13. pg_constraint
      • 51.15 pg_database
      • 51.21. pg_event_trigger
      • 51.22. pg_extension
      • 51.26 pg_index
      • 51.29. pg_language
      • 51.32. pg_namespace
      • 51.33. pg_opclass
      • 51.38. pg_policy
      • 51.39. pg_proc
      • 51.44. pg_rewrite
      • 51.49. pg_statistic
      • 51.50. pg_statistic_ext
      • 51.52. pg_subscription
      • 51.53. pg_subscription_rel
      • 51.54. pg_tablespace
      • 51.56. pg_trigger
      • 51.62. pg_type
      • 51.66. pg_available_extensions
      • 51.67. pg_available_extension_versions
      • 51.71. pg_hba_file_rules
      • 51.72. pg_indexes
      • 51.73. pg_locks
      • 51.77. pg_prepared_xacts
      • 51.79. pg_replication_origin_status
    • 54. System Views
      • 54.1. Overview
      • 54.19. pg_replication_slots
      • 54.20 pg_roles
      • 54.24. pg_settings
      • 54.25. pg_shadow
      • 54.26. pg_shmem_allocations
      • 54.27. pg_stats
      • 54.30. pg_tables
      • 54.31. pg_timezone_abbrevs
      • 54.32. pg_timezone_names
      • 54.33. pg_user
      • 54.35. pg_views
    • 55. Frontend/Backend Protocol
      • 52.1. Overview
      • 52.2. Message Flow
      • 52.3. SASL Authentication
      • 52.4. Streaming Replication Protocol
      • 52.5. Logical Streaming Replication Protocol
      • 52.6. Message Data Types
      • 52.7. Message Formats
      • 52.8. Error and Notice Message Fields
      • 52.9. Logical Replication Message Formats
      • 52.10. Summary of Changes since Protocol 2.0
    • 56. PostgreSQL 程式撰寫慣例
      • 53.1. Formatting
      • 53.2. Reporting Errors Within the Server
      • 53.3. Error Message Style Guide
      • 53.4. Miscellaneous Coding Conventions
    • 57. Native Language Support
      • 54.1. For the Translator
      • 54.2. For the Programmer
    • 58. 撰寫程序語言的處理程序
    • 59. Writing a Foreign Data Wrapper
      • 56.1. Foreign Data Wrapper Functions
      • 56.2. Foreign Data Wrapper Callback Routines
      • 56.3. Foreign Data Wrapper Helper Functions
      • 56.4. Foreign Data Wrapper Query Planning
      • 56.5. Row Locking in Foreign Data Wrappers
    • 60. Writing a Table Sampling Method
    • 61. Writing a Custom Scan Provider
    • 62. Genetic Query Optimizer
      • 59.1. Query Handling as a Complex Optimization Problem
      • 59.2. Genetic Algorithms
      • 59.3. Genetic Query Optimization (GEQO) in PostgreSQL
      • 59.4. Further Reading
    • 63. Table Access Method Interface Definition
    • 64. Index Access Method Interface Definition
    • 65. Generic WAL Records
    • 66. Custom WAL Resource Managers
    • 67. B-Tree Indexes
      • 67.1. Introduction
      • 67.2. Behavior of B-Tree Operator Classes
      • 67.3. B-Tree Support Functions
      • 67.4. Implementation
    • 68. GiST Indexes
      • 64.1. Introduction
      • 64.2. Built-in Operator Classes
      • 64.3. Extensibility
      • 64.4. Implementation
      • 64.5. Examples
    • 69. SP-GiST Indexes
      • 65.1. Introduction
      • 65.2. Built-in Operator Classes
      • 65.3. Extensibility
      • 65.4. Implementation
      • 65.5. Examples
    • 70. GIN 索引
      • 70.1. 簡介
      • 70.2. 內建運算子類
      • 70.3. 延伸介面
      • 70.4. 實作說明
      • 70.5. GIN 小技巧
      • 70.6. 限制
      • 70.7. 範例
    • 71. BRIN Indexes
      • 67.1. Introduction
      • 67.2. Built-in Operator Classes
      • 67.3. Extensibility
    • 72. Hash Indexes
    • 73. 資料庫實體儲存格式
      • 73.1. Database File Layout
      • 73.3. TOAST
      • 68.3. Free Space Map
      • 68.4 可視性映射表(Visibility Map)
      • 68.5. The Initialization Fork
      • 68.6. Database Page Layout
    • 74. System Catalog Declarations and Initial Contents
    • 75. 查詢計畫如何使用統計資訊
      • 70.1. Row Estimation Examples
      • 70.2. 多元統計資訊範例
      • 70.3. Planner Statistics and Security
    • 76. Backup Manifest Format
  • VIII. 附錄
    • A. PostgreSQL 錯誤代碼
    • B. 日期時間格式支援
      • B.1. 日期時間解譯流程
      • B.2. Handling of Invalid or Ambiguous Timestamps
      • B.3. 日期時間慣用字
      • B.4. 日期時間設定檔
      • B.5. POSIX Time Zone Specifications
      • B.6. 日期時間的沿革
      • B.7. Julian Dates
    • C. SQL 關鍵字
    • D. SQL 相容性
      • D.1. Supported Features
      • D.2. Unsupported Features
      • D.3. XML Limits and Conformance to SQL/XML
    • E. 版本資訊
      • E.1. Release 15.2
      • E.2. Release 15.1
      • E.3. Release 15
      • E.4. Prior Releases
    • F. 延伸支援模組
      • F.1. adminpack
      • F.2. amcheck
      • F.3. auth_delay
      • F.4. auto_explain
      • F.5. bloom
      • F.6. btree_gin
      • F.10. dblink
        • dblink_connect
        • dblink_connect_u
        • dblink_disconnect
        • dblink
        • dblink_exec
        • dblink_open
        • dblink_fetch
        • dblink_close
        • dblink_get_connections
        • dblink_error_message
        • dblink_send_query
        • dblink_is_busy
        • dblink_get_notify
        • dblink_get_result
        • dblink_cancel_query
        • dblink_get_pkey
        • dblink_build_sql_insert
        • dblink_build_sql_delete
        • dblink_build_sql_update
      • F.13. earthdistance
      • F.14. file_fdw
      • F.16. hstore
      • F.24. pg_buffercache
      • F.26. passwordcheck
      • F.29. pg_stat_statements
      • F.30. pgstattuple
      • F.31. pg_trgm
      • F.32. pg_visibility
      • F.38. postgres_fdw
      • F.35. sepgsql
      • F.43. tablefunc
      • F.45. test_decoding
      • F.46. tsm_system_rows
      • F.47. tsm_system_time
      • F.49. uuid-ossp
    • G. Additional Supplied Programs
      • G.1. Client Applications
        • oid2name
        • vacuumlo
      • G.2. Server Applications
        • pg_standby
    • H. 外部專案
      • H.1. 用戶端介面
      • H.2. Administration Tools
      • H.3. Procedural Languages
      • H.4. Extensions
    • I. The Source Code Repository
      • I.1. Getting The Source via Git
    • J. 文件取得
      • J.1. DocBook
      • J.2. Tool Sets
      • J.3. Building the Documentation
      • J.4. Documentation Authoring
      • J.5. Style Guide
    • K. PostgreSQL Limits
    • L. 縮寫字
    • M. Glossary
    • N. 色彩支援
      • N.1. When Color is Used
      • N.2. Configuring the Colors
    • O. Obsolete or Renamed Features
  • 參考書目
Powered by GitBook
On this page
  • 9.16.1. Processing and Creating JSON Data
  • 9.16.2. The SQL/JSON Path Language
  • 9.16.2.1. Strict And Lax Modes
  • 9.16.2.2. SQL/JSON Path Operators And Methods
  • 9.16.2.3. SQL/JSON Regular Expressions

Was this helpful?

Edit on GitHub
Export as PDF
  1. II. SQL 查詢語言
  2. 9. 函式及運算子

9.16. JSON 函式及運算子

Previous9.15. XML 函式Next9.17. 序列函式

Last updated 2 years ago

Was this helpful?

This section describes:

  • functions and operators for processing and creating JSON data

  • the SQL/JSON path language

To learn more about the SQL/JSON standard, see . For details on JSON types supported in PostgreSQL, see .

9.16.1. Processing and Creating JSON Data

shows the operators that are available for use with JSON data types (see ). In addition, the usual comparison operators shown in are available for jsonb, though not for json. The comparison operators follow the ordering rules for B-tree operations outlined in . See also for the aggregate function json_agg which aggregates record values as JSON, the aggregate function json_object_agg which aggregates pairs of values into a JSON object, and their jsonb equivalents, jsonb_agg and jsonb_object_agg.

Table 9.45. json and jsonb Operators

Operator

Description

Example(s)

json -> integer → json

jsonb -> integer → jsonb

Extracts n'th element of JSON array (array elements are indexed from zero, but negative integers count from the end).

'[{"a":"foo"},{"b":"bar"},{"c":"baz"}]'::json -> 2 → {"c":"baz"}

'[{"a":"foo"},{"b":"bar"},{"c":"baz"}]'::json -> -3 → {"a":"foo"}

json -> text → json

jsonb -> text → jsonb

Extracts JSON object field with the given key.

'{"a": {"b":"foo"}}'::json -> 'a' → {"b":"foo"}

json ->> integer → text

jsonb ->> integer → text

Extracts n'th element of JSON array, as text.

'[1,2,3]'::json ->> 2 → 3

json ->> text → text

jsonb ->> text → text

Extracts JSON object field with the given key, as text.

'{"a":1,"b":2}'::json ->> 'b' → 2

json #> text[] → json

jsonb #> text[] → jsonb

Extracts JSON sub-object at the specified path, where path elements can be either field keys or array indexes.

'{"a": {"b": ["foo","bar"]}}'::json #> '{a,b,1}' → "bar"

json #>> text[] → text

jsonb #>> text[] → text

Extracts JSON sub-object at the specified path as text.

'{"a": {"b": ["foo","bar"]}}'::json #>> '{a,b,1}' → bar

Note

The field/element/path extraction operators return NULL, rather than failing, if the JSON input does not have the right structure to match the request; for example if no such key or array element exists.

Some further operators exist only for jsonb, as shown in . describes how these operators can be used to effectively search indexed jsonb data.

Table 9.46. Additional jsonb Operators

Operator

Description

Example(s)

jsonb @> jsonb → boolean

'{"a":1, "b":2}'::jsonb @> '{"b":2}'::jsonb → t

jsonb <@ jsonb → boolean

Is the first JSON value contained in the second?

'{"b":2}'::jsonb <@ '{"a":1, "b":2}'::jsonb → t

jsonb ? text → boolean

Does the text string exist as a top-level key or array element within the JSON value?

'{"a":1, "b":2}'::jsonb ? 'b' → t

'["a", "b", "c"]'::jsonb ? 'b' → t

jsonb ?| text[] → boolean

Do any of the strings in the text array exist as top-level keys or array elements?

'{"a":1, "b":2, "c":3}'::jsonb ?| array['b', 'd'] → t

jsonb ?& text[] → boolean

Do all of the strings in the text array exist as top-level keys or array elements?

'["a", "b", "c"]'::jsonb ?& array['a', 'b'] → t

jsonb || jsonb → jsonb

Concatenates two jsonb values. Concatenating two arrays generates an array containing all the elements of each input. Concatenating two objects generates an object containing the union of their keys, taking the second object's value when there are duplicate keys. All other cases are treated by converting a non-array input into a single-element array, and then proceeding as for two arrays. Does not operate recursively: only the top-level array or object structure is merged.

'["a", "b"]'::jsonb || '["a", "d"]'::jsonb → ["a", "b", "a", "d"]

'{"a": "b"}'::jsonb || '{"c": "d"}'::jsonb → {"a": "b", "c": "d"}

'[1, 2]'::jsonb || '3'::jsonb → [1, 2, 3]

'{"a": "b"}'::jsonb || '42'::jsonb → [{"a": "b"}, 42]

To append an array to another array as a single entry, wrap it in an additional layer of array, for example:

'[1, 2]'::jsonb || jsonb_build_array('[3, 4]'::jsonb) → [1, 2, [3, 4]]

jsonb - text → jsonb

Deletes a key (and its value) from a JSON object, or matching string value(s) from a JSON array.

'{"a": "b", "c": "d"}'::jsonb - 'a' → {"c": "d"}

'["a", "b", "c", "b"]'::jsonb - 'b' → ["a", "c"]

jsonb - text[] → jsonb

Deletes all matching keys or array elements from the left operand.

'{"a": "b", "c": "d"}'::jsonb - '{a,c}'::text[] → {}

jsonb - integer → jsonb

Deletes the array element with specified index (negative integers count from the end). Throws an error if JSON value is not an array.

'["a", "b"]'::jsonb - 1 → ["a"]

jsonb #- text[] → jsonb

Deletes the field or array element at the specified path, where path elements can be either field keys or array indexes.

'["a", {"b":1}]'::jsonb #- '{1,b}' → ["a", {}]

jsonb @? jsonpath → boolean

Does JSON path return any item for the specified JSON value?

'{"a":[1,2,3,4,5]}'::jsonb @? '$.a[*] ? (@ > 2)' → t

jsonb @@ jsonpath → boolean

Returns the result of a JSON path predicate check for the specified JSON value. Only the first item of the result is taken into account. If the result is not Boolean, then NULL is returned.

'{"a":[1,2,3,4,5]}'::jsonb @@ '$.a[*] > 2' → t

Note

The jsonpath operators @? and @@ suppress the following errors: missing object field or array element, unexpected JSON item type, datetime and numeric errors. The jsonpath-related functions described below can also be told to suppress these types of errors. This behavior might be helpful when searching JSON document collections of varying structure.

Table 9.47. JSON Creation Functions

Function

Description

Example(s)

to_json ( anyelement ) → json

to_jsonb ( anyelement ) → jsonb

to_json('Fred said "Hi."'::text) → "Fred said \"Hi.\""

to_jsonb(row(42, 'Fred said "Hi."'::text)) → {"f1": 42, "f2": "Fred said \"Hi.\""}

array_to_json ( anyarray [, boolean ] ) → json

Converts an SQL array to a JSON array. The behavior is the same as to_json except that line feeds will be added between top-level array elements if the optional boolean parameter is true.

array_to_json('{{1,5},{99,100}}'::int[]) → [[1,5],[99,100]]

row_to_json ( record [, boolean ] ) → json

Converts an SQL composite value to a JSON object. The behavior is the same as to_json except that line feeds will be added between top-level elements if the optional boolean parameter is true.

row_to_json(row(1,'foo')) → {"f1":1,"f2":"foo"}

json_build_array ( VARIADIC "any" ) → json

jsonb_build_array ( VARIADIC "any" ) → jsonb

Builds a possibly-heterogeneously-typed JSON array out of a variadic argument list. Each argument is converted as per to_json or to_jsonb.

json_build_array(1, 2, 'foo', 4, 5) → [1, 2, "foo", 4, 5]

json_build_object ( VARIADIC "any" ) → json

jsonb_build_object ( VARIADIC "any" ) → jsonb

Builds a JSON object out of a variadic argument list. By convention, the argument list consists of alternating keys and values. Key arguments are coerced to text; value arguments are converted as per to_json or to_jsonb.

json_build_object('foo', 1, 2, row(3,'bar')) → {"foo" : 1, "2" : {"f1":3,"f2":"bar"}}

json_object ( text[] ) → json

jsonb_object ( text[] ) → jsonb

Builds a JSON object out of a text array. The array must have either exactly one dimension with an even number of members, in which case they are taken as alternating key/value pairs, or two dimensions such that each inner array has exactly two elements, which are taken as a key/value pair. All values are converted to JSON strings.

json_object('{a, 1, b, "def", c, 3.5}') → {"a" : "1", "b" : "def", "c" : "3.5"}

json_object('{{a, 1}, {b, "def"}, {c, 3.5}}') → {"a" : "1", "b" : "def", "c" : "3.5"}

json_object ( keys text[], values text[] ) → json

jsonb_object ( keys text[], values text[] ) → jsonb

This form of json_object takes keys and values pairwise from separate text arrays. Otherwise it is identical to the one-argument form.

json_object('{a,b}', '{1,2}') → {"a": "1", "b": "2"}

Table 9.48. JSON Processing Functions

Function

Description

Example(s)

json_array_elements ( json ) → setof json

jsonb_array_elements ( jsonb ) → setof jsonb

Expands the top-level JSON array into a set of JSON values.

select * from json_array_elements('[1,true, [2,false]]') →

json_array_elements_text ( json ) → setof text

jsonb_array_elements_text ( jsonb ) → setof text

Expands the top-level JSON array into a set of text values.

select * from json_array_elements_text('["foo", "bar"]') →

json_array_length ( json ) → integer

jsonb_array_length ( jsonb ) → integer

Returns the number of elements in the top-level JSON array.

json_array_length('[1,2,3,{"f1":1,"f2":[5,6]},4]') → 5

jsonb_array_length('[]') → 0

json_each ( json ) → setof record ( key text, value json )

jsonb_each ( jsonb ) → setof record ( key text, value jsonb )

Expands the top-level JSON object into a set of key/value pairs.

select * from json_each('{"a":"foo", "b":"bar"}') →

json_each_text ( json ) → setof record ( key text, value text )

jsonb_each_text ( jsonb ) → setof record ( key text, value text )

Expands the top-level JSON object into a set of key/value pairs. The returned values will be of type text.

select * from json_each_text('{"a":"foo", "b":"bar"}') →

json_extract_path ( from_json json, VARIADIC path_elems text[] ) → json

jsonb_extract_path ( from_json jsonb, VARIADIC path_elems text[] ) → jsonb

Extracts JSON sub-object at the specified path. (This is functionally equivalent to the #> operator, but writing the path out as a variadic list can be more convenient in some cases.)

json_extract_path('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}', 'f4', 'f6') → "foo"

json_extract_path_text ( from_json json, VARIADIC path_elems text[] ) → text

jsonb_extract_path_text ( from_json jsonb, VARIADIC path_elems text[] ) → text

Extracts JSON sub-object at the specified path as text. (This is functionally equivalent to the #>> operator.)

json_extract_path_text('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}', 'f4', 'f6') → foo

json_object_keys ( json ) → setof text

jsonb_object_keys ( jsonb ) → setof text

Returns the set of keys in the top-level JSON object.

select * from json_object_keys('{"f1":"abc","f2":{"f3":"a", "f4":"b"}}') →

json_populate_record ( base anyelement, from_json json ) → anyelement

jsonb_populate_record ( base anyelement, from_json jsonb ) → anyelement

Expands the top-level JSON object to a row having the composite type of the base argument. The JSON object is scanned for fields whose names match column names of the output row type, and their values are inserted into those columns of the output. (Fields that do not correspond to any output column name are ignored.) In typical use, the value of base is just NULL, which means that any output columns that do not match any object field will be filled with nulls. However, if base isn't NULL then the values it contains will be used for unmatched columns.

To convert a JSON value to the SQL type of an output column, the following rules are applied in sequence:

  • A JSON null value is converted to an SQL null in all cases.

  • If the output column is of type json or jsonb, the JSON value is just reproduced exactly.

  • If the output column is a composite (row) type, and the JSON value is a JSON object, the fields of the object are converted to columns of the output row type by recursive application of these rules.

  • Likewise, if the output column is an array type and the JSON value is a JSON array, the elements of the JSON array are converted to elements of the output array by recursive application of these rules.

  • Otherwise, if the JSON value is a string, the contents of the string are fed to the input conversion function for the column's data type.

  • Otherwise, the ordinary text representation of the JSON value is fed to the input conversion function for the column's data type.

While the example below uses a constant JSON value, typical use would be to reference a json or jsonb column laterally from another table in the query's FROM clause. Writing json_populate_record in the FROM clause is good practice, since all of the extracted columns are available for use without duplicate function calls.

create type subrowtype as (d int, e text); create type myrowtype as (a int, b text[], c subrowtype);

select * from json_populate_record(null::myrowtype, '{"a": 1, "b": ["2", "a b"], "c": {"d": 4, "e": "a b c"}, "x": "foo"}') →

json_populate_recordset ( base anyelement, from_json json ) → setof anyelement

jsonb_populate_recordset ( base anyelement, from_json jsonb ) → setof anyelement

Expands the top-level JSON array of objects to a set of rows having the composite type of the base argument. Each element of the JSON array is processed as described above for json[b]_populate_record.

create type twoints as (a int, b int);

select * from json_populate_recordset(null::twoints, '[{"a":1,"b":2}, {"a":3,"b":4}]') →

json_to_record ( json ) → record

jsonb_to_record ( jsonb ) → record

Expands the top-level JSON object to a row having the composite type defined by an AS clause. (As with all functions returning record, the calling query must explicitly define the structure of the record with an AS clause.) The output record is filled from fields of the JSON object, in the same way as described above for json[b]_populate_record. Since there is no input record value, unmatched columns are always filled with nulls.

create type myrowtype as (a int, b text);

select * from json_to_record('{"a":1,"b":[1,2,3],"c":[1,2,3],"e":"bar","r": {"a": 123, "b": "a b c"}}') as x(a int, b text, c int[], d text, r myrowtype) →

json_to_recordset ( json ) → setof record

jsonb_to_recordset ( jsonb ) → setof record

Expands the top-level JSON array of objects to a set of rows having the composite type defined by an AS clause. (As with all functions returning record, the calling query must explicitly define the structure of the record with an AS clause.) Each element of the JSON array is processed as described above for json[b]_populate_record.

select * from json_to_recordset('[{"a":1,"b":"foo"}, {"a":"2","c":"bar"}]') as x(a int, b text) →

jsonb_set ( target jsonb, path text[], new_value jsonb [, create_if_missing boolean ] ) → jsonb

Returns target with the item designated by path replaced by new_value, or with new_value added if create_if_missing is true (which is the default) and the item designated by path does not exist. All earlier steps in the path must exist, or the target is returned unchanged. As with the path oriented operators, negative integers that appear in the path count from the end of JSON arrays. If the last path step is an array index that is out of range, and create_if_missing is true, the new value is added at the beginning of the array if the index is negative, or at the end of the array if it is positive.

jsonb_set('[{"f1":1,"f2":null},2,null,3]', '{0,f1}', '[2,3,4]', false) → [{"f1": [2, 3, 4], "f2": null}, 2, null, 3]

jsonb_set('[{"f1":1,"f2":null},2]', '{0,f3}', '[2,3,4]') → [{"f1": 1, "f2": null, "f3": [2, 3, 4]}, 2]

jsonb_set_lax ( target jsonb, path text[], new_value jsonb [, create_if_missing boolean [, null_value_treatment text ]] ) → jsonb

If new_value is not NULL, behaves identically to jsonb_set. Otherwise behaves according to the value of null_value_treatment which must be one of 'raise_exception', 'use_json_null', 'delete_key', or 'return_target'. The default is 'use_json_null'.

jsonb_set_lax('[{"f1":1,"f2":null},2,null,3]', '{0,f1}', null) → [{"f1": null, "f2": null}, 2, null, 3]

jsonb_set_lax('[{"f1":99,"f2":null},2]', '{0,f3}', null, true, 'return_target') → [{"f1": 99, "f2": null}, 2]

jsonb_insert ( target jsonb, path text[], new_value jsonb [, insert_after boolean ] ) → jsonb

Returns target with new_value inserted. If the item designated by the path is an array element, new_value will be inserted before that item if insert_after is false (which is the default), or after it if insert_after is true. If the item designated by the path is an object field, new_value will be inserted only if the object does not already contain that key. All earlier steps in the path must exist, or the target is returned unchanged. As with the path oriented operators, negative integers that appear in the path count from the end of JSON arrays. If the last path step is an array index that is out of range, the new value is added at the beginning of the array if the index is negative, or at the end of the array if it is positive.

jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '"new_value"') → {"a": [0, "new_value", 1, 2]}

jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '"new_value"', true) → {"a": [0, 1, "new_value", 2]}

json_strip_nulls ( json ) → json

jsonb_strip_nulls ( jsonb ) → jsonb

Deletes all object fields that have null values from the given JSON value, recursively. Null values that are not object fields are untouched.

json_strip_nulls('[{"f1":1, "f2":null}, 2, null, 3]') → [{"f1":1},2,null,3]

jsonb_path_exists ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] ) → boolean

Checks whether the JSON path returns any item for the specified JSON value. If the vars argument is specified, it must be a JSON object, and its fields provide named values to be substituted into the jsonpath expression. If the silent argument is specified and is true, the function suppresses the same errors as the @? and @@ operators do.

jsonb_path_exists('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @ <= $max)', '{"min":2, "max":4}') → t

jsonb_path_match ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] ) → boolean

Returns the result of a JSON path predicate check for the specified JSON value. Only the first item of the result is taken into account. If the result is not Boolean, then NULL is returned. The optional vars and silent arguments act the same as for jsonb_path_exists.

jsonb_path_match('{"a":[1,2,3,4,5]}', 'exists($.a[*] ? (@ >= $min && @ <= $max))', '{"min":2, "max":4}') → t

jsonb_path_query ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] ) → setof jsonb

Returns all JSON items returned by the JSON path for the specified JSON value. The optional vars and silent arguments act the same as for jsonb_path_exists.

select * from jsonb_path_query('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @ <= $max)', '{"min":2, "max":4}') →

jsonb_path_query_array ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] ) → jsonb

Returns all JSON items returned by the JSON path for the specified JSON value, as a JSON array. The optional vars and silent arguments act the same as for jsonb_path_exists.

jsonb_path_query_array('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @ <= $max)', '{"min":2, "max":4}') → [2, 3, 4]

jsonb_path_query_first ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] ) → jsonb

Returns the first JSON item returned by the JSON path for the specified JSON value. Returns NULL if there are no results. The optional vars and silent arguments act the same as for jsonb_path_exists.

jsonb_path_query_first('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @ <= $max)', '{"min":2, "max":4}') → 2

jsonb_path_exists_tz ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] ) → boolean

jsonb_path_match_tz ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] ) → boolean

jsonb_path_query_tz ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] ) → setof jsonb

jsonb_path_query_array_tz ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] ) → jsonb

jsonb_path_query_first_tz ( target jsonb, path jsonpath [, vars jsonb [, silent boolean ]] ) → jsonb

jsonb_path_exists_tz('["2015-08-01 12:00:00-05"]', '$[*] ? (@.datetime() < "2015-08-02".datetime())') → t

jsonb_pretty ( jsonb ) → text

Converts the given JSON value to pretty-printed, indented text.

jsonb_pretty('[{"f1":1,"f2":null}, 2]') →

json_typeof ( json ) → text

jsonb_typeof ( jsonb ) → text

Returns the type of the top-level JSON value as a text string. Possible types are object, array, string, number, boolean, and null. (The null result should not be confused with an SQL NULL; see the examples.)

json_typeof('-123.4') → number

json_typeof('null'::json) → null

json_typeof(NULL::json) IS NULL → t

9.16.2. The SQL/JSON Path Language

JSON query functions and operators pass the provided path expression to the path engine for evaluation. If the expression matches the queried JSON data, the corresponding JSON item, or set of items, is returned. Path expressions are written in the SQL/JSON path language and can include arithmetic expressions and functions.

A path expression consists of a sequence of elements allowed by the jsonpath data type. The path expression is normally evaluated from left to right, but you can use parentheses to change the order of operations. If the evaluation is successful, a sequence of JSON items is produced, and the evaluation result is returned to the JSON query function that completes the specified computation.

For example, suppose you have some JSON data from a GPS tracker that you would like to parse, such as:

{
  "track": {
    "segments": [
      {
        "location":   [ 47.763, 13.4034 ],
        "start time": "2018-10-14 10:05:14",
        "HR": 73
      },
      {
        "location":   [ 47.706, 13.2635 ],
        "start time": "2018-10-14 10:39:21",
        "HR": 135
      }
    ]
  }
}

To retrieve the available track segments, you need to use the .key accessor operator to descend through surrounding JSON objects:

$.track.segments

To retrieve the contents of an array, you typically use the [*] operator. For example, the following path will return the location coordinates for all the available track segments:

$.track.segments[*].location

To return the coordinates of the first segment only, you can specify the corresponding subscript in the [] accessor operator. Recall that JSON array indexes are 0-relative:

$.track.segments[0].location
$.track.segments.size()

When defining a path, you can also use one or more filter expressions that work similarly to the WHERE clause in SQL. A filter expression begins with a question mark and provides a condition in parentheses:

? (condition)

Filter expressions must be written just after the path evaluation step to which they should apply. The result of that step is filtered to include only those items that satisfy the provided condition. SQL/JSON defines three-valued logic, so the condition can be true, false, or unknown. The unknown value plays the same role as SQL NULL and can be tested for with the is unknown predicate. Further path evaluation steps use only those items for which the filter expression returned true.

For example, suppose you would like to retrieve all heart rate values higher than 130. You can achieve this using the following expression:

$.track.segments[*].HR ? (@ > 130)

To get the start times of segments with such values, you have to filter out irrelevant segments before returning the start times, so the filter expression is applied to the previous step, and the path used in the condition is different:

$.track.segments[*] ? (@.HR > 130)."start time"

You can use several filter expressions in sequence, if required. For example, the following expression selects start times of all segments that contain locations with relevant coordinates and high heart rate values:

$.track.segments[*] ? (@.location[1] < 13.4) ? (@.HR > 130)."start time"

Using filter expressions at different nesting levels is also allowed. The following example first filters all segments by location, and then returns high heart rate values for these segments, if available:

$.track.segments[*] ? (@.location[1] < 13.4).HR ? (@ > 130)

You can also nest filter expressions within each other:

$.track ? (exists(@.segments[*] ? (@.HR > 130))).segments.size()

This expression returns the size of the track if it contains any segments with high heart rate values, or an empty sequence otherwise.

PostgreSQL's implementation of the SQL/JSON path language has the following deviations from the SQL/JSON standard:

  • A path expression can be a Boolean predicate, although the SQL/JSON standard allows predicates only in filters. This is necessary for implementation of the @@ operator. For example, the following jsonpath expression is valid in PostgreSQL:

    $.track.segments[*].HR < 70

9.16.2.1. Strict And Lax Modes

When you query JSON data, the path expression may not match the actual JSON data structure. An attempt to access a non-existent member of an object or element of an array results in a structural error. SQL/JSON path expressions have two modes of handling structural errors:

  • lax (default) — the path engine implicitly adapts the queried data to the specified path. Any remaining structural errors are suppressed and converted to empty SQL/JSON sequences.

  • strict — if a structural error occurs, an error is raised.

The lax mode facilitates matching of a JSON document structure and path expression if the JSON data does not conform to the expected schema. If an operand does not match the requirements of a particular operation, it can be automatically wrapped as an SQL/JSON array or unwrapped by converting its elements into an SQL/JSON sequence before performing this operation. Besides, comparison operators automatically unwrap their operands in the lax mode, so you can compare SQL/JSON arrays out-of-the-box. An array of size 1 is considered equal to its sole element. Automatic unwrapping is not performed only when:

  • The path expression contains type() or size() methods that return the type and the number of elements in the array, respectively.

  • The queried JSON data contain nested arrays. In this case, only the outermost array is unwrapped, while all the inner arrays remain unchanged. Thus, implicit unwrapping can only go one level down within each path evaluation step.

For example, when querying the GPS data listed above, you can abstract from the fact that it stores an array of segments when using the lax mode:

lax $.track.segments.location

In the strict mode, the specified path must exactly match the structure of the queried JSON document to return an SQL/JSON item, so using this path expression will cause an error. To get the same result as in the lax mode, you have to explicitly unwrap the segments array:

strict $.track.segments[*].location

The .** accessor can lead to surprising results when using the lax mode. For instance, the following query selects every HR value twice:

lax $.**.HR

This happens because the .** accessor selects both the segments array and each of its elements, while the .HR accessor automatically unwraps arrays when using the lax mode. To avoid surprising results, we recommend using the .** accessor only in the strict mode. The following query selects each HR value just once:

strict $.**.HR

9.16.2.2. SQL/JSON Path Operators And Methods

Table 9.49. jsonpath Operators and Methods

Operator/Method

Description

Example(s)

number + number → number

Addition

jsonb_path_query('[2]', '$[0] + 3') → 5

+ number → number

Unary plus (no operation); unlike addition, this can iterate over multiple values

jsonb_path_query_array('{"x": [2,3,4]}', '+ $.x') → [2, 3, 4]

number - number → number

Subtraction

jsonb_path_query('[2]', '7 - $[0]') → 5

- number → number

Negation; unlike subtraction, this can iterate over multiple values

jsonb_path_query_array('{"x": [2,3,4]}', '- $.x') → [-2, -3, -4]

number * number → number

Multiplication

jsonb_path_query('[4]', '2 * $[0]') → 8

number / number → number

Division

jsonb_path_query('[8.5]', '$[0] / 2') → 4.2500000000000000

number % number → number

Modulo (remainder)

jsonb_path_query('[32]', '$[0] % 10') → 2

value . type() → string

Type of the JSON item (see json_typeof)

jsonb_path_query_array('[1, "2", {}]', '$[*].type()') → ["number", "string", "object"]

value . size() → number

Size of the JSON item (number of array elements, or 1 if not an array)

jsonb_path_query('{"m": [11, 15]}', '$.m.size()') → 2

value . double() → number

Approximate floating-point number converted from a JSON number or string

jsonb_path_query('{"len": "1.9"}', '$.len.double() * 2') → 3.8

number . ceiling() → number

Nearest integer greater than or equal to the given number

jsonb_path_query('{"h": 1.3}', '$.h.ceiling()') → 2

number . floor() → number

Nearest integer less than or equal to the given number

jsonb_path_query('{"h": 1.7}', '$.h.floor()') → 1

number . abs() → number

Absolute value of the given number

jsonb_path_query('{"z": -0.3}', '$.z.abs()') → 0.3

string . datetime() → datetime_type (see note)

Date/time value converted from a string

jsonb_path_query('["2015-8-1", "2015-08-12"]', '$[*] ? (@.datetime() < "2015-08-2".datetime())') → "2015-8-1"

string . datetime(template) → datetime_type (see note)

Date/time value converted from a string using the specified to_timestamp template

jsonb_path_query_array('["12:30", "18:40"]', '$[*].datetime("HH24:MI")') → ["12:30:00", "18:40:00"]

object . keyvalue() → array

The object's key-value pairs, represented as an array of objects containing three fields: "key", "value", and "id"; "id" is a unique identifier of the object the key-value pair belongs to

jsonb_path_query_array('{"x": "20", "y": 32}', '$.keyvalue()') → [{"id": 0, "key": "x", "value": "20"}, {"id": 0, "key": "y", "value": 32}]

Note

The result type of the datetime() and datetime(template) methods can be date, timetz, time, timestamptz, or timestamp. Both methods determine their result type dynamically.

The datetime() method sequentially tries to match its input string to the ISO formats for date, timetz, time, timestamptz, and timestamp. It stops on the first matching format and emits the corresponding data type.

The datetime(template) method determines the result type according to the fields used in the provided template string.

Table 9.50. jsonpath Filter Expression Elements

Predicate/Value

Description

Example(s)

value == value → boolean

Equality comparison (this, and the other comparison operators, work on all JSON scalar values)

jsonb_path_query_array('[1, "a", 1, 3]', '$[*] ? (@ == 1)') → [1, 1]

jsonb_path_query_array('[1, "a", 1, 3]', '$[*] ? (@ == "a")') → ["a"]

value != value → boolean

value <> value → boolean

Non-equality comparison

jsonb_path_query_array('[1, 2, 1, 3]', '$[*] ? (@ != 1)') → [2, 3]

jsonb_path_query_array('["a", "b", "c"]', '$[*] ? (@ <> "b")') → ["a", "c"]

value < value → boolean

Less-than comparison

jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ < 2)') → [1]

value <= value → boolean

Less-than-or-equal-to comparison

jsonb_path_query_array('["a", "b", "c"]', '$[*] ? (@ <= "b")') → ["a", "b"]

value > value → boolean

Greater-than comparison

jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ > 2)') → [3]

value >= value → boolean

Greater-than-or-equal-to comparison

jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ >= 2)') → [2, 3]

true → boolean

JSON constant true

jsonb_path_query('[{"name": "John", "parent": false}, {"name": "Chris", "parent": true}]', '$[*] ? (@.parent == true)') → {"name": "Chris", "parent": true}

false → boolean

JSON constant false

jsonb_path_query('[{"name": "John", "parent": false}, {"name": "Chris", "parent": true}]', '$[*] ? (@.parent == false)') → {"name": "John", "parent": false}

null → value

JSON constant null (note that, unlike in SQL, comparison to null works normally)

jsonb_path_query('[{"name": "Mary", "job": null}, {"name": "Michael", "job": "driver"}]', '$[*] ? (@.job == null) .name') → "Mary"

boolean && boolean → boolean

Boolean AND

jsonb_path_query('[1, 3, 7]', '$[*] ? (@ > 1 && @ < 5)') → 3

boolean || boolean → boolean

Boolean OR

jsonb_path_query('[1, 3, 7]', '$[*] ? (@ < 1 || @ > 5)') → 7

! boolean → boolean

Boolean NOT

jsonb_path_query('[1, 3, 7]', '$[*] ? (!(@ < 5))') → 7

boolean is unknown → boolean

Tests whether a Boolean condition is unknown.

jsonb_path_query('[-1, 2, 7, "foo"]', '$[*] ? ((@ > 0) is unknown)') → "foo"

string like_regex string [ flag string ] → boolean

jsonb_path_query_array('["abc", "abd", "aBdC", "abdacb", "babc"]', '$[*] ? (@ like_regex "^ab.*c")') → ["abc", "abdacb"]

jsonb_path_query_array('["abc", "abd", "aBdC", "abdacb", "babc"]', '$[*] ? (@ like_regex "^ab.*c" flag "i")') → ["abc", "aBdC", "abdacb"]

string starts with string → boolean

Tests whether the second operand is an initial substring of the first operand.

jsonb_path_query('["John Smith", "Mary Stone", "Bob Johnson"]', '$[*] ? (@ starts with "John")') → "John Smith"

exists ( path_expression ) → boolean

Tests whether a path expression matches at least one SQL/JSON item. Returns unknown if the path expression would result in an error; the second example uses this to avoid a no-such-key error in strict mode.

jsonb_path_query('{"x": [1, 2], "y": [2, 4]}', 'strict $.* ? (exists (@ ? (@[*] > 2)))') → [2, 4]

jsonb_path_query_array('{"value": 41}', 'strict $ ? (exists (@.name)) .name') → []

9.16.2.3. SQL/JSON Regular Expressions

SQL/JSON path expressions allow matching text to a regular expression with the like_regex filter. For example, the following SQL/JSON path query would case-insensitively match all strings in an array that start with an English vowel:

$[*] ? (@ like_regex "^[aeiou]" flag "i")

The optional flag string may include one or more of the characters i for case-insensitive match, m to allow ^ and $ to match at newlines, s to allow . to match a newline, and q to quote the whole pattern (reducing the behavior to a simple substring match).

$.* ? (@ like_regex "^\\d+$")

Does the first JSON value contain the second? (See for details about containment.)

shows the functions that are available for constructing json and jsonb values.

Converts any SQL value to json or jsonb. Arrays and composites are converted recursively to arrays and objects (multidimensional arrays become arrays of arrays in JSON). Otherwise, if there is a cast from the SQL data type to json, the cast function will be used to perform the conversion; otherwise, a scalar JSON value is produced. For any scalar other than a number, a Boolean, or a null value, the text representation will be used, with escaping as necessary to make it a valid JSON string value.

For example, the extension has a cast from hstore to json, so that hstore values converted via the JSON creation functions will be represented as JSON objects, not as primitive string values.

shows the functions that are available for processing json and jsonb values.

These functions act like their counterparts described above without the _tz suffix, except that these functions support comparisons of date/time values that require timezone-aware conversions. The example below requires interpretation of the date-only value 2015-08-02 as a timestamp with time zone, so the result depends on the current setting. Due to this dependency, these functions are marked as stable, which means these functions cannot be used in indexes. Their counterparts are immutable, and so can be used in indexes; but they will throw errors if asked to make such comparisons.

SQL/JSON path expressions specify the items to be retrieved from the JSON data, similar to XPath expressions used for SQL access to XML. In PostgreSQL, path expressions are implemented as the jsonpath data type and can use any elements described in .

To refer to the JSON value being queried (the context item), use the $ variable in the path expression. It can be followed by one or more , which go down the JSON structure level by level to retrieve sub-items of the context item. Each operator that follows deals with the result of the previous evaluation step.

The result of each path evaluation step can be processed by one or more jsonpath operators and methods listed in . Each method name must be preceded by a dot. For example, you can get the size of an array:

More examples of using jsonpath operators and methods within path expressions appear below in .

The functions and operators that can be used in filter expressions are listed in . Within a filter expression, the @ variable denotes the value being filtered (i.e., one result of the preceding path step). You can write accessor operators after @ to retrieve component items.

There are minor differences in the interpretation of regular expression patterns used in like_regex filters, as described in .

shows the operators and methods available in jsonpath. Note that while the unary operators and methods can be applied to multiple values resulting from a preceding path step, the binary operators (addition etc.) can only be applied to single values.

The datetime() and datetime(template) methods use the same parsing rules as the to_timestamp SQL function does (see ), with three exceptions. First, these methods don't allow unmatched template patterns. Second, only the following separators are allowed in the template string: minus sign, period, solidus (slash), comma, apostrophe, semicolon, colon and space. Third, separators in the template string must exactly match the input string.

If different date/time types need to be compared, an implicit cast is applied. A date value can be cast to timestamp or timestamptz, timestamp can be cast to timestamptz, and time to timetz. However, all but the first of these conversions depend on the current setting, and thus can only be performed within timezone-aware jsonpath functions.

shows the available filter expression elements.

Tests whether the first operand matches the regular expression given by the second operand, optionally with modifications described by a string of flag characters (see ).

The SQL/JSON standard borrows its definition for regular expressions from the LIKE_REGEX operator, which in turn uses the XQuery standard. PostgreSQL does not currently support the LIKE_REGEX operator. Therefore, the like_regex filter is implemented using the POSIX regular expression engine described in . This leads to various minor discrepancies from standard SQL/JSON behavior, which are cataloged in . Note, however, that the flag-letter incompatibilities described there do not apply to SQL/JSON, as it translates the XQuery flag letters to match what the POSIX engine expects.

Keep in mind that the pattern argument of like_regex is a JSON path string literal, written according to the rules given in . This means in particular that any backslashes you want to use in the regular expression must be doubled. For example, to match string values of the root document that contain only digits:

   value
-----------
 1
 true
 [2,false]
   value
-----------
 foo
 bar
 key | value
-----+-------
 a   | "foo"
 b   | "bar"
 key | value
-----+-------
 a   | foo
 b   | bar
 json_object_keys
------------------
 f1
 f2
 a |   b       |      c
---+-----------+-------------
 1 | {2,"a b"} | (4,"a b c")
 a | b
---+---
 1 | 2
 3 | 4
 a |    b    |    c    | d |       r
---+---------+---------+---+---------------
 1 | [1,2,3] | {1,2,3} |   | (123,"a b c")
 a |  b
---+-----
 1 | foo
 2 |
 jsonb_path_query
------------------
 2
 3
 4
[
    {
        "f1": 1,
        "f2": null
    },
    2
]
[sqltr-19075-6]
Section 8.14
Table 9.45
Section 8.14
Table 9.1
Section 8.14.4
Section 9.21
Table 9.46
Section 8.14.4
Table 9.47
Table 9.48
Section 8.14.7
accessor operators
Section 9.16.2.2
Section 9.16.2.2
Table 9.50
Section 9.16.2.3
Table 9.49
Section 9.8
TimeZone
Table 9.50
Section 9.7.3
Section 9.7.3.8
Section 8.14.7
Section 8.14.3
[a]
[a]
hstore
TimeZone
Section 9.16.2.3