9.11. 地理資訊函式及運算子
The geometric typespoint
,box
,lseg
,line
,path
,polygon
, andcircle
have a large set of native support functions and operators, shown inTable 9.33,Table 9.34, andTable 9.35.
Caution
Note that the“same as”operator,~=
, represents the usual notion of equality for thepoint
,box
,polygon
, andcircle
types. Some of these types also have an=
operator, but=
compares for equal_areas_only. The other scalar comparison operators (<=
and so on) likewise compare areas for these types.
Table 9.33. Geometric Operators
Operator
Description
Example
+
Translation
box '((0,0),(1,1))' + point '(2.0,0)'
-
Translation
box '((0,0),(1,1))' - point '(2.0,0)'
*
Scaling/rotation
box '((0,0),(1,1))' * point '(2.0,0)'
/
Scaling/rotation
box '((0,0),(2,2))' / point '(2.0,0)'
#
Point or box of intersection
box '((1,-1),(-1,1))' # box '((1,1),(-2,-2))'
#
Number of points in path or polygon
# path '((1,0),(0,1),(-1,0))'
@-@
Length or circumference
@-@ path '((0,0),(1,0))'
@@
Center
@@ circle '((0,0),10)'
##
Closest point to first operand on second operand
point '(0,0)' ## lseg '((2,0),(0,2))'
<->
Distance between
circle '((0,0),1)' <-> circle '((5,0),1)'
&&
Overlaps? (One point in common makes this true.)
box '((0,0),(1,1))' && box '((0,0),(2,2))'
<<
Is strictly left of?
circle '((0,0),1)' << circle '((5,0),1)'
>>
Is strictly right of?
circle '((5,0),1)' >> circle '((0,0),1)'
&<
Does not extend to the right of?
box '((0,0),(1,1))' &< box '((0,0),(2,2))'
&>
Does not extend to the left of?
box '((0,0),(3,3))' &> box '((0,0),(2,2))'
`<<
`
Is strictly below?
`box '((0,0),(3,3))' <<
box '((3,4),(5,5))'`
`
>>`
Is strictly above?
`box '((3,4),(5,5))'
>> box '((0,0),(3,3))'`
`&<
`
Does not extend above?
`box '((0,0),(1,1))' &<
box '((0,0),(2,2))'`
`
&>`
Does not extend below?
`box '((0,0),(3,3))'
&> box '((0,0),(2,2))'`
<^
Is below (allows touching)?
circle '((0,0),1)' <^ circle '((0,5),1)'
>^
Is above (allows touching)?
circle '((0,5),1)' >^ circle '((0,0),1)'
?#
Intersects?
lseg '((-1,0),(1,0))' ?# box '((-2,-2),(2,2))'
?-
Is horizontal?
?- lseg '((-1,0),(1,0))'
?-
Are horizontally aligned?
point '(1,0)' ?- point '(0,0)'
`?
`
Is vertical?
`?
lseg '((-1,0),(1,0))'`
`?
`
Are vertically aligned?
`point '(0,1)' ?
point '(0,0)'`
`?-
`
Is perpendicular?
`lseg '((0,0),(0,1))' ?-
lseg '((0,0),(1,0))'`
`?
`
Are parallel?
`lseg '((-1,0),(1,0))' ?
lseg '((-1,2),(1,2))'`
@>
Contains?
circle '((0,0),2)' @> point '(1,1)'
<@
Contained in or on?
point '(1,1)' <@ circle '((0,0),2)'
~=
Same as?
polygon '((0,0),(1,1))' ~= polygon '((1,1),(0,0))'
Note
BeforePostgreSQL8.2, the containment operators@>
and<@
were respectively called~
and@
. These names are still available, but are deprecated and will eventually be removed.
Table 9.34. Geometric Functions
Function
Return Type
Description
Example
area(object
)
double precision
area
area(box '((0,0),(1,1))')
center(object
)
point
center
center(box '((0,0),(1,2))')
diameter(circle
)
double precision
diameter of circle
diameter(circle '((0,0),2.0)')
height(box
)
double precision
vertical size of box
height(box '((0,0),(1,1))')
isclosed(path
)
boolean
a closed path?
isclosed(path '((0,0),(1,1),(2,0))')
isopen(path
)
boolean
an open path?
isopen(path '[(0,0),(1,1),(2,0)]')
length(object
)
double precision
length
length(path '((-1,0),(1,0))')
npoints(path
)
int
number of points
npoints(path '[(0,0),(1,1),(2,0)]')
npoints(polygon
)
int
number of points
npoints(polygon '((1,1),(0,0))')
pclose(path
)
path
convert path to closed
pclose(path '[(0,0),(1,1),(2,0)]')
popen(path
)
path
convert path to open
popen(path '((0,0),(1,1),(2,0))')
radius(circle
)
double precision
radius of circle
radius(circle '((0,0),2.0)')
width(box
)
double precision
horizontal size of box
width(box '((0,0),(1,1))')
Table 9.35. Geometric Type Conversion Functions
Function
Return Type
Description
Example
box(circle
)
box
circle to box
box(circle '((0,0),2.0)')
box(point
)
box
point to empty box
box(point '(0,0)')
box(point
,point
)
box
points to box
box(point '(0,0)', point '(1,1)')
box(polygon
)
box
polygon to box
box(polygon '((0,0),(1,1),(2,0))')
bound_box(box
,box
)
box
boxes to bounding box
bound_box(box '((0,0),(1,1))', box '((3,3),(4,4))')
circle(box
)
circle
box to circle
circle(box '((0,0),(1,1))')
circle(point
,double precision
)
circle
center and radius to circle
circle(point '(0,0)', 2.0)
circle(polygon
)
circle
polygon to circle
circle(polygon '((0,0),(1,1),(2,0))')
line(point
,point
)
line
points to line
line(point '(-1,0)', point '(1,0)')
lseg(box
)
lseg
box diagonal to line segment
lseg(box '((-1,0),(1,0))')
lseg(point
,point
)
lseg
points to line segment
lseg(point '(-1,0)', point '(1,0)')
path(polygon
)
path
polygon to path
path(polygon '((0,0),(1,1),(2,0))')
point
(double precision
,double precision
)
point
construct point
point(23.4, -44.5)
point(box
)
point
center of box
point(box '((-1,0),(1,0))')
point(circle
)
point
center of circle
point(circle '((0,0),2.0)')
point(lseg
)
point
center of line segment
point(lseg '((-1,0),(1,0))')
point(polygon
)
point
center of polygon
point(polygon '((0,0),(1,1),(2,0))')
polygon(box
)
polygon
box to 4-point polygon
polygon(box '((0,0),(1,1))')
polygon(circle
)
polygon
circle to 12-point polygon
polygon(circle '((0,0),2.0)')
polygon(npts
,circle
)
polygon
circle tonpts
-point polygon
polygon(12, circle '((0,0),2.0)')
polygon(path
)
polygon
path to polygon
polygon(path '((0,0),(1,1),(2,0))')
It is possible to access the two component numbers of apoint
as though the point were an array with indexes 0 and 1. For example, ift.p
is apoint
column thenSELECT p[0] FROM t
retrieves the X coordinate andUPDATE t SET p[1] = ...
changes the Y coordinate. In the same way, a value of typebox
orlseg
can be treated as an array of twopoint
values.
Thearea
function works for the typesbox
,circle
, andpath
. Thearea
function only works on thepath
data type if the points in thepath
are non-intersecting. For example, thepath'((0,0),(0,1),(2,1),(2,2),(1,2),(1,0),(0,0))'::PATH
will not work; however, the following visually identicalpath'((0,0),(0,1),(1,1),(1,2),(2,2),(2,1),(1,1),(1,0),(0,0))'::PATH
will work. If the concept of an intersecting versus non-intersectingpath
is confusing, draw both of the abovepath
s side by side on a piece of graph paper.
Last updated