PostgreSQL 正體中文使用手冊
PostgreSQL.TW官方使用手冊小島故事加入社團
14
14
  • 簡介
  • 前言
    • 1. 什麼是 PostgreSQL?
    • 2. PostgreSQL 沿革
    • 3. 慣例
    • 4. 其他參考資訊
    • 5. 問題回報指南
  • I. 新手教學
    • 1. 入門指南
      • 1.1. 安裝
      • 1.2. 基礎架構
      • 1.3. 建立一個資料庫
      • 1.4. 存取一個資料庫
    • 2. SQL 查詢語言
      • 2.1. 簡介
      • 2.2. 概念
      • 2.3. 創建一個新的資料表
      • 2.4. 資料列是資料表的組成單位
      • 2.5. 資料表的查詢
      • 2.6. 交叉查詢
      • 2.7. 彙總查詢
      • 2.8. 更新資料
      • 2.9. 刪除資料
    • 3. 先進功能
      • 3.1. 簡介
      • 3.2. 檢視表(View)
      • 3.3. 外部索引鍵
      • 3.4. 交易安全
      • 3.5. 窗函數
      • 3.6. 繼承
      • 3.7. 結論
  • II. SQL 查詢語言
    • 4. SQL 語法
      • 4.1. 語法結構
      • 4.2. 參數表示式
      • 4.3. 函數呼叫
    • 5. 定義資料結構
      • 5.1. 認識資料表
      • 5.2. 預設值
      • 5.3. Generated Columns
      • 5.4. 限制條件
      • 5.5. 系統欄位
      • 5.6. 表格變更
      • 5.7. 權限
      • 5.8. 資料列安全原則
      • 5.9. Schemas
      • 5.10. 繼承
      • 5.11. 分割資料表
      • 5.12. 外部資料
      • 5.13. 其他資料庫物件
      • 5.14. 相依性追蹤
    • 6. 資料處理
      • 6.1. 新增資料
      • 6.2. 更新資料
      • 6.3. 刪除資料
      • 6.4. 修改並回傳資料
    • 7. 資料查詢
      • 7.1. 概觀
      • 7.2. 資料表表示式
      • 7.3. 取得資料列表
      • 7.4. 合併查詢結果
      • 7.5. 資料排序
      • 7.6. LIMIT 和 OFFSET
      • 7.7. VALUES 列舉資料
      • 7.8. WITH Querys(Common Table Expressions)
    • 8. 資料型別
      • 8.1. 數字型別
      • 8.2. 貨幣型別
      • 8.3. 字串型別
      • 8.4. 位元組型別(bytea)
      • 8.5. 日期時間型別
      • 8.6. 布林型別
      • 8.7. 列舉型別
      • 8.8. 地理資訊型別
      • 8.9. 網路資訊型別
      • 8.10. 位元字串型別
      • 8.11. 全文檢索型別
      • 8.12. UUID 型別
      • 8.13. XML 型別
      • 8.14. JSON 型別
      • 8.15. 陣列
      • 8.16. 複合型別
      • 8.17. 範圍型別
      • 8.18. Domain Types
      • 8.19. 物件指標型別
      • 8.20. pg_lsn 型別
      • 8.21. 概念型別
    • 9. 函式及運算子
      • 9.1. 邏輯運算子
      • 9.2. 比較函式及運算子
      • 9.3. 數學函式及運算子
      • 9.4. 字串函式及運算子
      • 9.5. 位元字串函式及運算子
      • 9.6. 二元字串函式及運算子
      • 9.7. 特徵比對
      • 9.8. 型別轉換函式
      • 9.9 日期時間函式及運算子
      • 9.10. 列舉型別函式
      • 9.11. 地理資訊函式及運算子
      • 9.12. 網路位址函式及運算子
      • 9.13. 文字檢索函式及運算子
      • 9.14. UUID Functions
      • 9.15. XML 函式
      • 9.16. JSON 函式及運算子
      • 9.17. 序列函式
      • 9.18. 條件表示式
      • 9.19. 陣列函式及運算子
      • 9.20. 範圍函式及運算子
      • 9.21. 彙總函數
      • 9.22. Window 函式
      • 9.23. 子查詢
      • 9.24. 資料列與陣列的比較運算
      • 9.25. 集合回傳函式
      • 9.26. 系統資訊函數
      • 9.27. 系統管理函式
      • 9.28. 觸發函式
      • 9.29. 事件觸發函式
      • 9.30. Statistics Information Functions
    • 10. 型別轉換
      • 10.1. 概觀
      • 10.2. 運算子
      • 10.3. 函式
      • 10.4. 資料儲存轉換規則
      • 10.5. UNION、CASE 等相關結構
      • 10.6. SELECT 輸出規則
    • 11. 索引(Index)
      • 11.1. 簡介
      • 11.2. 索引型別
      • 11.3. 多欄位索引
      • 11.4. 索引與 ORDER BY
      • 11.5. 善用多個索引
      • 11.6. 唯一值索引
      • 11.7. 表示式索引
      • 11.8. 部份索引(partial index)
      • 11.9. Index-Only Scans and Covering Indexes
      • 11.10. 運算子物件及家族
      • 11.11. 索引與排序規則
      • 11.12. 檢查索引運用
    • 12. 全文檢索
      • 12.1. 簡介
      • 12.2. 查詢與索引
      • 12.3. 細部控制
      • 12.4. 延伸功能
      • 12.5. 斷詞
      • 12.6. 字典
      • 12.7. 組態範例
      • 12.8. 測試與除錯
      • 12.9. GIN 及 GiST 索引型別
      • 12.10. psql支援
      • 12.11. 功能限制
    • 13. 一致性管理(MVCC)
      • 13.1. 簡介
      • 13.2. 交易隔離
      • 13.3. 鎖定模式
      • 13.4. 在應用端檢視資料一致性
      • 13.5. 特別注意
      • 13.6. 鎖定與索引
    • 14. 效能技巧
      • 14.1. 善用 EXPLAIN
      • 14.2. 統計資訊
      • 14.3. 使用確切的 JOIN 方式
      • 14.4. 快速建立資料庫內容
      • 14.5. 風險性彈性設定
    • 15. 平行查詢
      • 15.1. 如何運作?
      • 15.2. 啓用時機?
      • 15.3. 平行查詢計畫
      • 15.4. 平行查詢的安全性
  • III. 系統管理
    • 16. Installation from Binaries
    • 17. 用原始碼安裝
      • 16.1. Short Version
      • 16.2. Requirements
      • 16.3. Getting The Source
      • 16.4. 安裝流程
      • 16.5. Post-Installation Setup
      • 16.6. Supported Platforms
      • 16.7. 平台相關的注意事項
    • 18. 用原始碼在 Windows 上安裝
      • 17.1. Building with Visual C++ or the Microsoft Windows SDK
    • 19. 服務配置與維運
      • 18.1. PostgreSQL 使用者帳號
      • 18.2. Creating a Database Cluster
      • 18.3. Starting the Database Server
      • 18.4. 核心資源管理
      • 18.5. Shutting Down the Server
      • 18.6. Upgrading a PostgreSQL Cluster
      • 18.7. Preventing Server Spoofing
      • 18.8. Encryption Options
      • 18.9. Secure TCP/IP Connections with SSL
      • 18.10. Secure TCP/IP Connections with GSSAPI Encryption
      • 18.11. Secure TCP/IP Connections with SSH Tunnels
      • 18.12. 在 Windows 註冊事件日誌
    • 20. 服務組態設定
      • 19.1. Setting Parameters
      • 19.2. File Locations
      • 19.3. 連線與認證
      • 19.4. 資源配置
      • 19.5. Write Ahead Log
      • 19.6. 複寫(Replication)
      • 19.7. 查詢規畫
      • 19.8. 錯誤回報與日誌記錄
      • 19.9. 執行階段統計資訊
      • 19.10. 自動資料庫清理
      • 20.11. 用戶端連線預設參數
      • 19.12. 交易鎖定管理
      • 19.13. 版本與平台的相容性
      • 19.14. Error Handling
      • 19.15. 預先配置的參數
      • 19.16. Customized Options
      • 19.17. Developer Options
      • 19.18. Short Options
    • 21. 使用者認證
      • 20.1. 設定檔:pg_hba.conf
      • 20.2. User Name Maps
      • 20.3. Authentication Methods
      • 20.4. Trust Authentication
      • 20.5. Password Authentication
      • 20.6. GSSAPI Authentication
      • 20.7. SSPI Authentication
      • 20.8. Ident Authentication
      • 20.9. Peer Authentication
      • 20.10. LDAP Authentication
      • 20.11. RADIUS Authentication
      • 20.12. Certificate Authentication
      • 20.13. PAM Authentication
    • 22. 資料庫角色
      • 22.1. Database Roles
      • 22.2. Role Attributes
      • 22.3. Role Membership
      • 22.4. 移除角色
      • 22.5. Default Roles
      • 22.6. Function Security
    • 23. Managing Databases
      • 22.1. Overview
      • 22.2. Creating a Database
      • 22.3. 樣版資料庫
      • 22.4. Database Configuration
      • 22.5. Destroying a Database
      • 22.6. Tablespaces
    • 24. 語系
      • 23.1. 語系支援
      • 23.2. Collation Support
      • 23.3. 字元集支援
    • 25. 例行性資料庫維護工作
      • 25.1. 例行性資料清理
      • 25.2. 定期重建索引
      • 25.3. Log 檔案維護
    • 26. 備份及還原
      • 25.1. SQL Dump
      • 25.2. 檔案系統層級備份
      • 25.3. Continuous Archiving and Point-in-Time Recovery (PITR)
    • 27. High Availability, Load Balancing, and Replication
      • 26.1. 比較不同的解決方案
      • 26.2. 日誌轉送備用伺服器 Log-Shipping Standby Servers
      • 26.3. Failover
      • 26.4. Alternative Method for Log Shipping
      • 26.5. Hot Standby
    • 28. 監控資料庫活動
      • 27.1. Standard Unix Tools
      • 27.2. 統計資訊收集器
      • 27.3. Viewing Locks
      • 27.4. Progress Reporting
      • 27.5. Dynamic Tracing
    • 29. 監控磁碟使用情況
      • 28.1. 瞭解磁碟使用情形
      • 28.2. 磁碟空間不足錯誤
    • 30. 高可靠度及預寫日誌
      • 29.1. 可靠度
      • 29.2. Write-Ahead Logging(WAL)
      • 29.3. Asynchronous Commit
      • 29.4. WAL Configuration
      • 29.5. WAL Internals
    • 31. 邏輯複寫(Logical Replication)
      • 30.1. 發佈(Publication)
      • 30.2. 訂閱(Subscription)
      • 30.3. 衝突處理
      • 30.4. 限制
      • 30.5. 架構
      • 30.6. 監控
      • 30.7. 安全性
      • 30.8. 系統設定
      • 30.9. 快速設定
    • 32. Just-in-Time Compilation(JIT)
      • 31.1. What is JIT compilation?
      • 31.2. When to JIT?
      • 31.3. Configuration
      • 31.4. Extensibility
    • 33. 迴歸測試
      • 32.1. Running the Tests
      • 32.2. Test Evaluation
      • 32.3. Variant Comparison Files
      • 32.4. TAP Tests
      • 32.5. Test Coverage Examination
  • IV. 用戶端介面
    • 33. libpq - C Library
      • 33.1. 資料庫連線控制函數
      • 33.2. 連線狀態函數
      • 33.3. Command Execution Functions
      • 33.4. Asynchronous Command Processing
      • 33.5. Retrieving Query Results Row-By-Row
      • 33.6. Canceling Queries in Progress
      • 33.7. The Fast-Path Interface
      • 33.8. Asynchronous Notification
      • 33.9. Functions Associated with the COPY Command
      • 33.10. Control Functions
      • 33.11. Miscellaneous Functions
      • 33.12. Notice Processing
      • 33.13. Event System
      • 33.14. 環境變數
      • 33.15. 密碼檔
      • 33.16. The Connection Service File
      • 33.17. LDAP Lookup of Connection Parameters
      • 33.18. SSL Support
      • 33.19. Behavior in Threaded Programs
      • 33.20. Building libpq Programs
      • 33.21. Example Programs
    • 34. Large Objects
      • 35.1. Introduction
      • 35.2. Implementation Features
      • 35.3. Client Interfaces
      • 35.4. Server-side Functions
      • 35.5. Example Program
    • 35. ECPG - Embedded SQL in C
      • 35.1. The Concept
      • 35.2. Managing Database Connections
      • 35.3. Running SQL Commands
      • 35.4. Using Host Variables
      • 35.5. Dynamic SQL
      • 35.6. pgtypes Library
      • 35.7. Using Descriptor Areas
      • 35.8. Error Handling
      • 35.9. Preprocessor Directives
      • 35.10. Processing Embedded SQL Programs
      • 35.11. Library Functions
      • 35.12. Large Objects
      • 35.13. C++ Applications
      • 35.14. Embedded SQL Commands
      • 35.15. Informix Compatibility Mode
      • 35.16. Internals
    • 36. The Information Schema
      • 36.1. The Schema
      • 36.2. Data Types
      • 36.3. information_schema_catalog_name
      • 36.4. administrable_role_authorizations
      • 36.5. applicable_roles
      • 36.6. attributes
      • 36.7. character_sets
      • 36.8. check_constraint_routine_usage
      • 36.9. check_constraints
      • 36.10. collations
      • 36.11. collation_character_set_applicability
      • 36.12. column_domain_usage
      • 36.13. column_options
      • 36.14. column_privileges
      • 36.16. column_udt_usage
      • 36.17. columns
      • 36.18. constraint_column_usage
      • 37.18. constraint_table_usage
      • 37.19. data_type_privileges
      • 37.20. domain_constraints
      • 37.21. domain_udt_usage
      • 37.22. domains
      • 37.23. element_types
      • 37.24. enabled_roles
      • 37.25. foreign_data_wrapper_options
      • 37.26. foreign_data_wrappers
      • 37.27. foreign_server_options
      • 37.28. foreign_servers
      • 37.29. foreign_table_options
      • 37.30. foreign_tables
      • 36.32. key_column_usage
      • 36.33. parameters
      • 36.34. referential_constraints
      • 37.34. role_column_grants
      • 37.35. role_routine_grants
      • 36.37. role_table_grants
      • 37.37. role_udt_grants
      • 37.38. role_usage_grants
      • 37.39. routine_privileges
      • 37.40. routines
      • 36.42. schemata
      • 37.42. sequences
      • 37.43. sql_features
      • 37.44. sql_implementation_info
      • 37.45. sql_languages
      • 37.46. sql_packages
      • 37.47. sql_parts
      • 37.48. sql_sizing
      • 37.49. sql_sizing_profiles
      • 36.51. table_constraints
      • 36.49. table_privileges
      • 37.52. tables
      • 37.53. transforms
      • 37.54. triggered_update_columns
      • 37.55. triggers
      • 37.56. udt_privileges
      • 37.57. usage_privileges
      • 37.58. user_defined_types
      • 37.59. user_mapping_options
      • 37.60. user_mappings
      • 37.61. view_column_usage
      • 37.62. view_routine_usage
      • 37.63. view_table_usage
      • 37.64. views
  • V. 資料庫程式設計
    • 38. SQL 延伸功能
      • 38.1. How Extensibility Works
      • 37.2. The PostgreSQL Type System
      • 37.3. 使用者自訂函數
      • 37.4. User-defined Procedures
      • 37.5. Query Language (SQL) Functions
      • 37.6. Function Overloading
      • 37.7. 函數易變性類別
      • 37.8. Procedural Language Functions
      • 37.9. Internal Functions
      • 37.10. C-Language Functions
      • 37.11. Function Optimization Information
      • 37.12. User-defined Aggregates
      • 37.13. User-defined Types
      • 37.14. User-defined Operators
      • 37.15. Operator Optimization Information
      • 38.16. Interfacing Extensions To Indexes
      • 37.17. 封裝相關物件到延伸功能中
      • 37.18. Extension Building Infrastructure
    • 38. Triggers
      • 38.1. Overview of Trigger Behavior
      • 38.2. Visibility of Data Changes
      • 38.3. Writing Trigger Functions in C
      • 38.4. A Complete Trigger Example
    • 39. Event Triggers (事件觸發)
      • 39.1. Overview of Event Trigger Behavior
      • 39.2. Event Trigger Firing Matrix
      • 39.3. Writing Event Trigger Functions in C
      • 39.4. A Complete Event Trigger Example
    • 40. 規則系統
      • 40.1. The Query Tree
      • 40.2. Views and the Rule System
      • 40.3. Materialized Views
      • 40.4. Rules on INSERT, UPDATE, and DELETE
      • 40.5. 規則及權限
      • 40.6. Rules and Command Status
      • 40.7. Rules Versus Triggers
    • 41. Procedural Languages(程序語言)
      • 41.1. Installing Procedural Languages
      • 41.2. Structure of PL/pgSQL
      • 41.5. Basic Statements
      • 41.11. 深入了解 PL/pgSQL
    • 42. PL/pgSQL - SQL Procedural Language
      • 42.1. Overview
      • 42.2. Structure of PL/pgSQL
      • 42.3. Declarations
      • 42.4. Expressions
      • 42.5. 基本語法
      • 42.6. Control Structures
    • 43. PL/Tcl - Tcl Procedural Language
    • 44. PL/Perl — Perl Procedural Language
    • 45. PL/Python - Python Procedural Language
      • 45.1. Python 2 vs. Python 3
      • 45.2. PL/Python Functions
      • 45.3. Data Values
      • 45.4. Sharing Data
      • 45.5. Anonymous Code Blocks
      • 45.6. Trigger Functions
      • 45.7. Database Access
      • 45.8. Explicit Subtransactions
      • 45.9. Transaction Management
      • 45.10. Utility Functions
      • 45.11. Environment Variables
    • 46. Server Programming Interface
    • 47. Background Worker Processes
    • 48. Logical Decoding
      • 48.1. Logical Decoding Examples
      • 48.2. Logical Decoding Concepts
      • 48.3. Streaming Replication Protocol Interface
      • 48.4. Logical Decoding SQL Interface
      • 48.5. System Catalogs Related to Logical Decoding
      • 48.6. Logical Decoding Output Plugins
      • 48.7. Logical Decoding Output Writers
      • 48.8. Synchronous Replication Support for Logical Decoding
    • 49. Replication Progress Tracking
  • VI. 參考資訊
    • I. SQL 指令
      • ALTER DATABASE
      • ALTER DEFAULT PRIVILEGES
      • ALTER EXTENSION
      • ALTER FUNCTION
      • ALTER INDEX
      • ALTER LANGUAGE
      • ALTER MATERIALIZED VIEW
      • ALTER POLICY
      • ALTER PUBLICATION
      • ALTER ROLE
      • ALTER RULE
      • ALTER SCHEMA
      • ALTER SEQUENCE
      • ALTER STATISTICS
      • ALTER SUBSCRIPTION
      • ALTER SYSTEM
      • ALTER TABLE
      • ALTER TABLESPACE
      • ALTER TRIGGER
      • ALTER TYPE
      • ALTER USER
      • ALTER VIEW
      • ANALYZE
      • CLUSTER
      • COMMENT
      • COMMIT PREPARED
      • COPY
      • CREATE ACCESS METHOD
      • CREATE CAST
      • CREATE DATABASE
      • CREATE EVENT TRIGGER
      • CREATE EXTENSION
      • CREATE FOREIGN TABLE
      • CREATE FOREIGN DATA WRAPPER
      • CREATE FUNCTION
      • CREATE INDEX
      • CREATE LANGUAGE
      • CREATE MATERIALIZED VIEW
      • CREATE DOMAIN
      • CREATE POLICY
      • CREATE PROCEDURE
      • CREATE PUBLICATION
      • CREATE ROLE
      • CREATE RULE
      • CREATE SCHEMA
      • CREATE SEQUENCE
      • CREATE SERVER
      • CREATE STATISTICS
      • CREATE SUBSCRIPTION
      • CREATE TABLE
      • CREATE TABLE AS
      • CREATE TABLESPACE
      • CREATE TRANSFORM
      • CREATE TRIGGER
      • CREATE TYPE
      • CREATE USER
      • CREATE USER MAPPING
      • CREATE VIEW
      • DEALLOCATE
      • DELETE
      • DO
      • DROP ACCESS METHOD
      • DROP DATABASE
      • DROP EXTENSION
      • DROP FUNCTION
      • DROP INDEX
      • DROP LANGUAGE
      • DROP MATERIALIZED VIEW
      • DROP OWNED
      • DROP POLICY
      • DROP PUBLICATION
      • DROP ROLE
      • DROP RULE
      • DROP SCHEMA
      • DROP SEQUENCE
      • DROP STATISTICS
      • DROP SUBSCRIPTION
      • DROP TABLE
      • DROP TABLESPACE
      • DROP TRANSFORM
      • DROP TRIGGER
      • DROP TYPE
      • DROP USER
      • DROP VIEW
      • EXECUTE
      • EXPLAIN
      • GRANT
      • IMPORT FOREIGN SCHEMA
      • INSERT
      • LISTEN
      • LOAD
      • NOTIFY
      • PREPARE
      • PREPARE TRANSACTION
      • REASSIGN OWNED
      • REFRESH MATERIALIZED VIEW
      • REINDEX
      • RESET
      • REVOKE
      • ROLLBACK PREPARED
      • SECURITY LABEL
      • SELECT
      • SELECT INTO
      • SET
      • SET CONSTRAINTS
      • SET ROLE
      • SET SESSION AUTHORIZATION
      • SET TRANSACTION
      • SHOW
      • TRUNCATE
      • UNLISTEN
      • UPDATE
      • VACUUM
      • VALUES
    • II. PostgreSQL 用戶端工具
      • createdb
      • createuser
      • dropdb
      • dropuser
      • oid2name
      • pgbench
      • pg_basebackup
      • pg_dump
      • pg_dumpall
      • pg_isready
      • pg_receivewal
      • pg_recvlogical
      • pg_restore
      • pg_verifybackup
      • psql
      • vacuumdb
    • III. PostgreSQL 伺服器應用程式
      • initdb
      • pg_archivecleanup
      • pg_ctl
      • pg_standby
      • pg_test_timing
      • pg_upgrade
      • postgres
  • VII. 資料庫進階
    • 50. PostgreSQL 的內部架構
      • 50.1. 處理查詢語句的流程
      • 50.2. How Connections Are Established
      • 50.3. The Parser Stage
      • 50.4. The PostgreSQL Rule System
      • 50.5. Planner/Optimizer
      • 50.6. Executor
    • 51. 系統目錄
      • 51.3. pg_am
      • 51.7. pg_attribute
      • 51.8. pg_authid
      • 51.9. pg_auth_members
      • 51.10. pg_cast
      • 51.11 pg_class
      • 51.12. pg_collation
      • 51.13. pg_constraint
      • 51.15 pg_database
      • 51.21. pg_event_trigger
      • 51.22. pg_extension
      • 51.26 pg_index
      • 51.29. pg_language
      • 51.32. pg_namespace
      • 51.33. pg_opclass
      • 51.38. pg_policy
      • 51.39. pg_proc
      • 51.44. pg_rewrite
      • 51.49. pg_statistic
      • 51.50. pg_statistic_ext
      • 51.52. pg_subscription
      • 51.53. pg_subscription_rel
      • 51.54. pg_tablespace
      • 51.56. pg_trigger
      • 51.62. pg_type
      • 51.66. pg_available_extensions
      • 51.67. pg_available_extension_versions
      • 51.71. pg_hba_file_rules
      • 51.72. pg_indexes
      • 51.73. pg_locks
      • 51.77. pg_prepared_xacts
      • 51.79. pg_replication_origin_status
      • 51.80. pg_replication_slots
      • 51.82 pg_roles
      • 51.85. pg_settings
      • 51.87. pg_shmem_allocations
      • 51.88. pg_stats
      • 51.90. pg_tables
      • 51.93. pg_user
      • 51.95. pg_views
    • 52. Frontend/Backend Protocol
      • 52.1. Overview
      • 52.2. Message Flow
      • 52.3. SASL Authentication
      • 52.4. Streaming Replication Protocol
      • 52.5. Logical Streaming Replication Protocol
      • 52.6. Message Data Types
      • 52.7. Message Formats
      • 52.8. Error and Notice Message Fields
      • 52.9. Logical Replication Message Formats
      • 52.10. Summary of Changes since Protocol 2.0
    • 53. PostgreSQL 程式撰寫慣例
      • 53.1. Formatting
      • 53.2. Reporting Errors Within the Server
      • 53.3. Error Message Style Guide
      • 53.4. Miscellaneous Coding Conventions
    • 54. Native Language Support
      • 54.1. For the Translator
      • 54.2. For the Programmer
    • 55. 撰寫程序語言的處理程序
    • 56. Writing a Foreign Data Wrapper
      • 56.1. Foreign Data Wrapper Functions
      • 56.2. Foreign Data Wrapper Callback Routines
      • 56.3. Foreign Data Wrapper Helper Functions
      • 56.4. Foreign Data Wrapper Query Planning
      • 56.5. Row Locking in Foreign Data Wrappers
    • 59. Genetic Query Optimizer
      • 59.1. Query Handling as a Complex Optimization Problem
      • 59.2. Genetic Algorithms
      • 59.3. Genetic Query Optimization (GEQO) in PostgreSQL
      • 59.4. Further Reading
    • 60. Table Access Method Interface Definition
    • 61. Index Access Method Interface Definition
    • 62. Generic WAL Records
    • 64. B-Tree Indexes
      • 64.1. Introduction
      • 64.2. Behavior of B-Tree Operator Classes
      • 64.3. B-Tree Support Functions
      • 64.4. Implementation
    • 64. GiST Indexes
      • 64.1. Introduction
      • 64.2. Built-in Operator Classes
      • 64.3. Extensibility
      • 64.4. Implementation
      • 64.5. Examples
    • 65. SP-GiST Indexes
      • 65.1. Introduction
      • 65.2. Built-in Operator Classes
      • 65.3. Extensibility
      • 65.4. Implementation
      • 65.5. Examples
    • 66. GIN 索引
      • 66.1. 簡介
      • 66.2. 內建運算子類
      • 66.3. 延伸介面
      • 66.4. 實作說明
      • 66.5. GIN 小巧技
      • 66.6. 限制
      • 66.7. 範例
    • 67. BRIN Indexes
      • 67.1. Introduction
      • 67.2. Built-in Operator Classes
      • 67.3. Extensibility
    • 68. 資料庫實體儲存格式
      • 68.1. Database File Layout
      • 68.2. TOAST
      • 68.3. Free Space Map
      • 68.4 可視性映射表(Visibility Map)
      • 68.5. The Initialization Fork
      • 68.6. Database Page Layout
    • 69. System Catalog Declarations and Initial Contents
    • 70. 查詢計畫如何使用統計資訊
      • 70.1. Row Estimation Examples
      • 70.2. 多元統計資訊範例
      • 70.3. Planner Statistics and Security
    • 71. Backup Manifest Format
  • VIII. 附錄
    • A. PostgreSQL 錯誤代碼
    • B. 日期時間格式支援
      • B.1. 日期時間解譯流程
      • B.2. 日期時間慣用字
      • B.3. 日期時間設定檔
      • B.4. 日期時間的沿革
    • C. SQL 關鍵字
    • D. SQL 相容性
      • D.1. Supported Features
      • D.2. Unsupported Features
      • D.3. XML Limits and Conformance to SQL/XML
    • E. 版本資訊
      • E.1. Release 14
    • F. 延伸支援模組
      • F.1. adminpack
      • F.2. amcheck
      • F.3. auth_delay
      • F.4. auto_explain
      • F.5. bloom
      • F.6. btree_gin
      • F.10. dblink
        • dblink_connect
        • dblink_connect_u
        • dblink_disconnect
        • dblink
        • dblink_exec
        • dblink_open
        • dblink_fetch
        • dblink_close
        • dblink_get_connections
        • dblink_error_message
        • dblink_send_query
        • dblink_is_busy
        • dblink_get_notify
        • dblink_get_result
        • dblink_cancel_query
        • dblink_get_pkey
        • dblink_build_sql_insert
        • dblink_build_sql_delete
        • dblink_build_sql_update
      • F.13. earthdistance
      • F.14. file_fdw
      • F.16. hstore
      • F.24. pg_buffercache
      • F.29. pg_stat_statements
      • F.30. pgstattuple
      • F.31. pg_trgm
      • F.32. pg_visibility
      • F.33. postgres_fdw
      • F.35. sepgsql
      • F.38. tablefunc
      • F.40. test_decoding
      • F.41. tsm_system_rows
      • F.42. tsm_system_time
      • F.44. uuid-ossp
    • G. Additional Supplied Programs
      • G.1. Client Applications
        • oid2name
        • vacuumlo
      • G.2. Server Applications
        • pg_standby
    • H. 外部專案
      • H.1. 用戶端介面
      • H.2. Administration Tools
      • H.3. Procedural Languages
      • H.4. Extensions
    • I. The Source Code Repository
      • I.1. Getting The Source via Git
    • J. 文件取得
    • K. PostgreSQL Limits
    • L. 縮寫字
    • M. Glossary
    • N. 色彩支援
      • N.1. When Color is Used
      • N.2. Configuring the Colors
  • 參考書目
Powered by GitBook
On this page
  • F.16.1. hstore External Representation
  • F.16.2. hstore Operators and Functions
  • F.16.3. Indexes
  • F.16.4. Examples
  • F.16.5. Statistics
  • F.16.6. Compatibility
  • F.16.7. Transforms
  • F.16.8. Authors

Was this helpful?

Edit on GitHub
Export as PDF
  1. VIII. 附錄
  2. F. 延伸支援模組

F.16. hstore

This module implements the hstore data type for storing sets of key/value pairs within a single PostgreSQL value. This can be useful in various scenarios, such as rows with many attributes that are rarely examined, or semi-structured data. Keys and values are simply text strings.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE privilege on the current database.

F.16.1. hstore External Representation

The text representation of an hstore, used for input and output, includes zero or more key => value pairs separated by commas. Some examples:

k => v
foo => bar, baz => whatever
"1-a" => "anything at all"

The order of the pairs is not significant (and may not be reproduced on output). Whitespace between pairs or around the => sign is ignored. Double-quote keys and values that include whitespace, commas, =s or >s. To include a double quote or a backslash in a key or value, escape it with a backslash.

Each key in an hstore is unique. If you declare an hstore with duplicate keys, only one will be stored in the hstore and there is no guarantee as to which will be kept:

SELECT 'a=>1,a=>2'::hstore;
  hstore
----------
 "a"=>"1"

A value (but not a key) can be an SQL NULL. For example:

key => NULL

The NULL keyword is case-insensitive. Double-quote the NULL to treat it as the ordinary string “NULL”.

Note

On output, double quotes always surround keys and values, even when it's not strictly necessary.

F.16.2. hstore Operators and Functions

Table F.7. hstore Operators

Operator

Description

Example(s)

hstore -> text → text

Returns value associated with given key, or NULL if not present.

'a=>x, b=>y'::hstore -> 'a' → x

hstore -> text[] → text[]

Returns values associated with given keys, or NULL if not present.

'a=>x, b=>y, c=>z'::hstore -> ARRAY['c','a'] → {"z","x"}

hstore

hstore ? text → boolean

Does hstore contain key?

'a=>1'::hstore ? 'a' → t

hstore ?& text[] → boolean

Does hstore contain all the specified keys?

'a=>1,b=>2'::hstore ?& ARRAY['a','b'] → t

hstore ?

hstore @> hstore → boolean

Does left operand contain right?

'a=>b, b=>1, c=>NULL'::hstore @> 'b=>1' → t

hstore <@ hstore → boolean

Is left operand contained in right?

'a=>c'::hstore <@ 'a=>b, b=>1, c=>NULL' → f

hstore - text → hstore

Deletes key from left operand.

'a=>1, b=>2, c=>3'::hstore - 'b'::text → "a"=>"1", "c"=>"3"

hstore - text[] → hstore

Deletes keys from left operand.

'a=>1, b=>2, c=>3'::hstore - ARRAY['a','b'] → "c"=>"3"

hstore - hstore → hstore

Deletes pairs from left operand that match pairs in the right operand.

'a=>1, b=>2, c=>3'::hstore - 'a=>4, b=>2'::hstore → "a"=>"1", "c"=>"3"

anyelement #= hstore → anyelement

Replaces fields in the left operand (which must be a composite type) with matching values from hstore.

ROW(1,3) #= 'f1=>11'::hstore → (11,3)

%% hstore → text[]

Converts hstore to an array of alternating keys and values.

%% 'a=>foo, b=>bar'::hstore → {a,foo,b,bar}

%# hstore → text[]

Converts hstore to a two-dimensional key/value array.

%# 'a=>foo, b=>bar'::hstore → {{a,foo},{b,bar}}

Table F.8. hstore Functions

Function

Description

Example(s)

hstore ( record ) → hstore

Constructs an hstore from a record or row.

hstore(ROW(1,2)) → "f1"=>"1", "f2"=>"2"

hstore ( text[] ) → hstore

Constructs an hstore from an array, which may be either a key/value array, or a two-dimensional array.

hstore(ARRAY['a','1','b','2']) → "a"=>"1", "b"=>"2"

hstore(ARRAY[['c','3'],['d','4']]) → "c"=>"3", "d"=>"4"

hstore ( text[], text[] ) → hstore

Constructs an hstore from separate key and value arrays.

hstore(ARRAY['a','b'], ARRAY['1','2']) → "a"=>"1", "b"=>"2"

hstore ( text, text ) → hstore

Makes a single-item hstore.

hstore('a', 'b') → "a"=>"b"

akeys ( hstore ) → text[]

Extracts an hstore's keys as an array.

akeys('a=>1,b=>2') → {a,b}

skeys ( hstore ) → setof text

Extracts an hstore's keys as a set.

skeys('a=>1,b=>2') →

avals ( hstore ) → text[]

Extracts an hstore's values as an array.

avals('a=>1,b=>2') → {1,2}

svals ( hstore ) → setof text

Extracts an hstore's values as a set.

svals('a=>1,b=>2') →

hstore_to_array ( hstore ) → text[]

Extracts an hstore's keys and values as an array of alternating keys and values.

hstore_to_array('a=>1,b=>2') → {a,1,b,2}

hstore_to_matrix ( hstore ) → text[]

Extracts an hstore's keys and values as a two-dimensional array.

hstore_to_matrix('a=>1,b=>2') → {{a,1},{b,2}}

hstore_to_json ( hstore ) → json

Converts an hstore to a json value, converting all non-null values to JSON strings.

This function is used implicitly when an hstore value is cast to json.

hstore_to_json('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345, f=>1.234, g=>2.345e+4') → {"a key": "1", "b": "t", "c": null, "d": "12345", "e": "012345", "f": "1.234", "g": "2.345e+4"}

hstore_to_jsonb ( hstore ) → jsonb

Converts an hstore to a jsonb value, converting all non-null values to JSON strings.

This function is used implicitly when an hstore value is cast to jsonb.

hstore_to_jsonb('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345, f=>1.234, g=>2.345e+4') → {"a key": "1", "b": "t", "c": null, "d": "12345", "e": "012345", "f": "1.234", "g": "2.345e+4"}

hstore_to_json_loose ( hstore ) → json

Converts an hstore to a json value, but attempts to distinguish numerical and Boolean values so they are unquoted in the JSON.

hstore_to_json_loose('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345, f=>1.234, g=>2.345e+4') → {"a key": 1, "b": true, "c": null, "d": 12345, "e": "012345", "f": 1.234, "g": 2.345e+4}

hstore_to_jsonb_loose ( hstore ) → jsonb

Converts an hstore to a jsonb value, but attempts to distinguish numerical and Boolean values so they are unquoted in the JSON.

hstore_to_jsonb_loose('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345, f=>1.234, g=>2.345e+4') → {"a key": 1, "b": true, "c": null, "d": 12345, "e": "012345", "f": 1.234, "g": 2.345e+4}

slice ( hstore, text[] ) → hstore

Extracts a subset of an hstore containing only the specified keys.

slice('a=>1,b=>2,c=>3'::hstore, ARRAY['b','c','x']) → "b"=>"2", "c"=>"3"

each ( hstore ) → setof record ( key text, value text )

Extracts an hstore's keys and values as a set of records.

select * from each('a=>1,b=>2') →

exist ( hstore, text ) → boolean

Does hstore contain key?

exist('a=>1', 'a') → t

defined ( hstore, text ) → boolean

Does hstore contain a non-NULL value for key?

defined('a=>NULL', 'a') → f

delete ( hstore, text ) → hstore

Deletes pair with matching key.

delete('a=>1,b=>2', 'b') → "a"=>"1"

delete ( hstore, text[] ) → hstore

Deletes pairs with matching keys.

delete('a=>1,b=>2,c=>3', ARRAY['a','b']) → "c"=>"3"

delete ( hstore, hstore ) → hstore

Deletes pairs matching those in the second argument.

delete('a=>1,b=>2', 'a=>4,b=>2'::hstore) → "a"=>"1"

populate_record ( anyelement, hstore ) → anyelement

Replaces fields in the left operand (which must be a composite type) with matching values from hstore.

populate_record(ROW(1,2), 'f1=>42'::hstore) → (42,2)

In addition to these operators and functions, values of the hstore type can be subscripted, allowing them to act like associative arrays. Only a single subscript of type text can be specified; it is interpreted as a key and the corresponding value is fetched or stored. For example,

CREATE TABLE mytable (h hstore);
INSERT INTO mytable VALUES ('a=>b, c=>d');
SELECT h['a'] FROM mytable;
 h
---
 b
(1 row)

UPDATE mytable SET h['c'] = 'new';
SELECT h FROM mytable;
          h
----------------------
 "a"=>"b", "c"=>"new"
(1 row)

A subscripted fetch returns NULL if the subscript is NULL or that key does not exist in the hstore. (Thus, a subscripted fetch is not greatly different from the -> operator.) A subscripted update fails if the subscript is NULL; otherwise, it replaces the value for that key, adding an entry to the hstore if the key does not already exist.

F.16.3. Indexes

hstore has GiST and GIN index support for the @>, ?, ?& and ?| operators. For example:

CREATE INDEX hidx ON testhstore USING GIST (h);

CREATE INDEX hidx ON testhstore USING GIN (h);

gist_hstore_ops GiST opclass approximates a set of key/value pairs as a bitmap signature. Its optional integer parameter siglen determines the signature length in bytes. The default length is 16 bytes. Valid values of signature length are between 1 and 2024 bytes. Longer signatures lead to a more precise search (scanning a smaller fraction of the index and fewer heap pages), at the cost of a larger index.

Example of creating such an index with a signature length of 32 bytes:

CREATE INDEX hidx ON testhstore USING GIST (h gist_hstore_ops(siglen=32));

hstore also supports btree or hash indexes for the = operator. This allows hstore columns to be declared UNIQUE, or to be used in GROUP BY, ORDER BY or DISTINCT expressions. The sort ordering for hstore values is not particularly useful, but these indexes may be useful for equivalence lookups. Create indexes for = comparisons as follows:

CREATE INDEX hidx ON testhstore USING BTREE (h);

CREATE INDEX hidx ON testhstore USING HASH (h);

F.16.4. Examples

Add a key, or update an existing key with a new value:

UPDATE tab SET h['c'] = '3';

Another way to do the same thing is:

UPDATE tab SET h = h || hstore('c', '3');

If multiple keys are to be added or changed in one operation, the concatenation approach is more efficient than subscripting:

UPDATE tab SET h = h || hstore(array['q', 'w'], array['11', '12']);

Delete a key:

UPDATE tab SET h = delete(h, 'k1');

Convert a record to an hstore:

CREATE TABLE test (col1 integer, col2 text, col3 text);
INSERT INTO test VALUES (123, 'foo', 'bar');

SELECT hstore(t) FROM test AS t;
                   hstore                    
---------------------------------------------
 "col1"=>"123", "col2"=>"foo", "col3"=>"bar"
(1 row)

Convert an hstore to a predefined record type:

CREATE TABLE test (col1 integer, col2 text, col3 text);

SELECT * FROM populate_record(null::test,
                              '"col1"=>"456", "col2"=>"zzz"');
 col1 | col2 | col3 
------+------+------
  456 | zzz  | 
(1 row)

Modify an existing record using the values from an hstore:

CREATE TABLE test (col1 integer, col2 text, col3 text);
INSERT INTO test VALUES (123, 'foo', 'bar');

SELECT (r).* FROM (SELECT t #= '"col3"=>"baz"' AS r FROM test t) s;
 col1 | col2 | col3 
------+------+------
  123 | foo  | baz
(1 row)

F.16.5. Statistics

The hstore type, because of its intrinsic liberality, could contain a lot of different keys. Checking for valid keys is the task of the application. The following examples demonstrate several techniques for checking keys and obtaining statistics.

Simple example:

SELECT * FROM each('aaa=>bq, b=>NULL, ""=>1');

Using a table:

CREATE TABLE stat AS SELECT (each(h)).key, (each(h)).value FROM testhstore;

Online statistics:

SELECT key, count(*) FROM
  (SELECT (each(h)).key FROM testhstore) AS stat
  GROUP BY key
  ORDER BY count DESC, key;
    key    | count
-----------+-------
 line      |   883
 query     |   207
 pos       |   203
 node      |   202
 space     |   197
 status    |   195
 public    |   194
 title     |   190
 org       |   189
...................

F.16.6. Compatibility

As of PostgreSQL 9.0, hstore uses a different internal representation than previous versions. This presents no obstacle for dump/restore upgrades since the text representation (used in the dump) is unchanged.

In the event of a binary upgrade, upward compatibility is maintained by having the new code recognize old-format data. This will entail a slight performance penalty when processing data that has not yet been modified by the new code. It is possible to force an upgrade of all values in a table column by doing an UPDATE statement as follows:

UPDATE tablename SET hstorecol = hstorecol || '';

Another way to do it is:

ALTER TABLE tablename ALTER hstorecol TYPE hstore USING hstorecol || '';

The ALTER TABLE method requires an ACCESS EXCLUSIVE lock on the table, but does not result in bloating the table with old row versions.

F.16.7. Transforms

Caution

It is strongly recommended that the transform extensions be installed in the same schema as hstore. Otherwise there are installation-time security hazards if a transform extension's schema contains objects defined by a hostile user.

F.16.8. Authors

PreviousF.14. file_fdwNextF.24. pg_buffercache

Last updated 3 years ago

Was this helpful?

Keep in mind that the hstore text format, when used for input, applies before any required quoting or escaping. If you are passing an hstore literal via a parameter, then no additional processing is needed. But if you're passing it as a quoted literal constant, then any single-quote characters and (depending on the setting of the standard_conforming_strings configuration parameter) backslash characters need to be escaped correctly. See for more on the handling of string constants.

The operators provided by the hstore module are shown in , the functions in .

Additional extensions are available that implement transforms for the hstore type for the languages PL/Perl and PL/Python. The extensions for PL/Perl are called hstore_plperl and hstore_plperlu, for trusted and untrusted PL/Perl. If you install these transforms and specify them when creating a function, hstore values are mapped to Perl hashes. The extensions for PL/Python are called hstore_plpythonu, hstore_plpython2u, and hstore_plpython3u (see for the PL/Python naming convention). If you use them, hstore values are mapped to Python dictionaries.

Oleg Bartunov <>, Moscow, Moscow University, Russia

Teodor Sigaev <>, Moscow, Delta-Soft Ltd., Russia

Additional enhancements by Andrew Gierth <>, United Kingdom

Section 4.1.2.1
Table F.7
Table F.8
Section 46.1
oleg@sai.msu.su
teodor@sigaev.ru
andrew@tao11.riddles.org.uk