PostgreSQL 正體中文使用手冊
PostgreSQL.TW官方使用手冊小島故事加入社團
11
11
  • 簡介
  • 前言
    • 1. 什麼是PostgreSQL?
    • 2. PostgreSQL沿革
    • 3. 慣例
    • 4. 其他參考資訊
    • 5. 問題回報指南
  • I. 新手教學
    • 1. 入門指南
      • 1.1. 安裝
      • 1.2. 基礎架構
      • 1.3. 建立一個資料庫
      • 1.4. 存取一個資料庫
    • 2. SQL查詢語言
      • 2.1. 簡介
      • 2.2. 概念
      • 2.3. 創建一個新的資料表
      • 2.4. 資料列是資料表的組成單位
      • 2.5. 資料表的查詢
      • 2.6. 交叉查詢
      • 2.7. 彙總查詢
      • 2.8. 更新資料
      • 2.9. 刪除資料
    • 3. 先進功能
      • 3.1. 簡介
      • 3.2. 檢視表(View)
      • 3.3. 外部索引鍵
      • 3.4. 交易安全
      • 3.5. 窗函數
      • 3.6. 繼承
      • 3.7. 結論
  • II. SQL查詢語言
    • 4. SQL語法
      • 4.1. 語法結構
      • 4.2. 參數表示式
      • 4.3. 函數呼叫
    • 5. 定義資料結構
      • 5.1. 認識資料表
      • 5.2. 預設值
      • 5.3. 限制條件
      • 5.4. 系統欄位
      • 5.5. 表格變更
      • 5.6. 權限
      • 5.7. 資料列安全原則
      • 5.8. Schemas
      • 5.9. 繼承
      • 5.10. 分割資料表
      • 5.11. 外部資料
      • 5.12. 其他資料庫物件
      • 5.13. 相依性追蹤
    • 6. 資料處理
      • 6.1. 新增資料
      • 6.2. 更新資料
      • 6.3. 刪除資料
      • 6.4. 修改並回傳資料
    • 7. 資料查詢
      • 7.1. 概觀
      • 7.2. 資料表表示式
      • 7.3. 取得資料列表
      • 7.4. 合併查詢結果
      • 7.5. 資料排序
      • 7.6. 指定資料範圍
      • 7.7. 列舉資料
      • 7.8. 遞迴查詢(Common Table Expressions)
    • 8. 資料型別
      • 8.1. 數字型別
      • 8.2. 貨幣型別
      • 8.3. 字串型別
      • 8.4. 位元組型別(bytea)
      • 8.5. 日期時間型別
      • 8.6. 布林型別
      • 8.7. 列舉型別
      • 8.8. 地理資訊型別
      • 8.9. 網路資訊型別
      • 8.10. 位元字串型別
      • 8.11. 全文檢索型別
      • 8.12. UUID型別
      • 8.13. XML型別
      • 8.14. JSON型別
      • 8.15. 陣列
      • 8.16. 複合型別
      • 8.17. 範圍型別
      • 8.18. 指標型別
      • 8.19. pg_lsn型別
      • 8.20. 概念型別
    • 9. 函式及運算子
      • 9.1. 邏輯運算子
      • 9.2. 比較函式及運算子
      • 9.3. 數學函式及運算子
      • 9.4. 字串函式及運算子
      • 9.5. 位元字串函式及運算子
      • 9.6. 二元字串函式及運算子
      • 9.7. 特徵比對
      • 9.8. 型別轉換函式
      • 9.9 日期時間函式及運算子
      • 9.10. 列舉型別函式
      • 9.11. 地理資訊函式及運算子
      • 9.12. 網路位址函式及運算子
      • 9.13. 文字檢索函式及運算子
      • 9.14. XML函式
      • 9.15. JSON函式及運算子
      • 9.16. 序列函式
      • 9.17. 條件表示式
      • 9.18. 陣列函式及運算子
      • 9.19. 範圍函式及運算子
      • 9.20. 彙總函數
      • 9.21. Window函式
      • 9.22. 子查詢
      • 9.23. 資料列與陣列的比較運算
      • 9.24. 集合回傳函式
      • 9.25. 系統資訊函數
      • 9.26. 系統管理函式
      • 9.27. 觸發函式
      • 9.28. 事件觸發函式
    • 10. 型別轉換
      • 10.1. 概觀
      • 10.2. 運算子
      • 10.3. 函式
      • 10.4. 資料儲存轉換規則
      • 10.5. UNION、CASE 等相關結構
      • 10.6. SELECT輸出規則
    • 11. 索引(Index)
      • 11.1. 簡介
      • 11.2. 索引型別
      • 11.3. 多欄位索引
      • 11.4. 索引與ORDER BY
      • 11.5. 善用多個索引
      • 11.6. 唯一值索引
      • 11.7. 表示式索引
      • 11.8. 部份索引(partial index)
      • 11.9. 運算子物件及家族
      • 11.10. 索引與排序規則
      • 11.11. 索引限定查詢(Index-only scan)
      • 11.12. 檢查索引運用
    • 12. 全文檢索
      • 12.1. 簡介
      • 12.2. 查詢與索引
      • 12.3. 細部控制
      • 12.4. 延伸功能
      • 12.5. 斷詞
      • 12.6. 字典
      • 12.7. 組態範例
      • 12.8. 測試與除錯
      • 12.9. GIN及GiST索引型別
      • 12.10. psql支援
      • 12.11. 功能限制
    • 13. 一致性管理(MVCC)
      • 13.1. 簡介
      • 13.2. 交易隔離
      • 13.3. 鎖定模式
      • 13.4. 在應用端檢視資料一致性
      • 13.5. 特別注意
      • 13.6. 鎖定與索引
    • 14. 效能技巧
      • 14.1. 善用EXPLAIN
      • 14.2. 統計資訊
      • 14.3. 使用確切的JOIN方式
      • 14.4. 快速建立資料庫內容
      • 14.5. 彈性設定
    • 15. 平行查詢
      • 15.1. 如何運作?
      • 15.2. 啓用時機?
      • 15.3. 平行查詢計畫
      • 15.4. 平行查詢的安全性
  • III. 系統管理
    • 16. 用原始碼安裝
      • 16.1. Short Version
      • 16.2. Requirements
      • 16.3. Getting The Source
      • 16.4. 安裝流程
      • 16.5. Post-Installation Setup
      • 16.6. Supported Platforms
      • 16.7. 平台相關的注意事項
    • 17. 用原始碼在 Windows 上安裝
      • 17.1. Building with Visual C++ or the Microsoft Windows SDK
    • 18. 服務配置與維運
      • 18.1. PostgreSQL 使用者帳號
      • 18.2. Creating a Database Cluster
      • 18.3. Starting the Database Server
      • 18.4. 核心資源管理
      • 18.5. Shutting Down the Server
      • 18.6. Upgrading a PostgreSQL Cluster
      • 18.7. Preventing Server Spoofing
      • 18.8. Encryption Options
      • 18.9. Secure TCP/IP Connections with SSL
      • 18.10. Secure TCP/IP Connections with SSH Tunnels
      • 18.11. 在 Windows 註冊事件日誌
    • 19. 服務組態設定
      • 19.1. Setting Parameters
      • 19.2. File Locations
      • 19.3. 連線與認證
      • 19.4. 資源配置
      • 19.5. Write Ahead Log
      • 19.6. 複寫(Replication)
      • 19.7. 查詢規畫
      • 19.8. 錯誤回報與日誌記錄
      • 19.9. Run-time Statistics
      • 19.10. 自動資料庫清理
      • 19.11. 用戶端連線預設參數
      • 19.12. 交易鎖定管理
      • 19.13. 版本與平台的相容性
      • 19.14. Error Handling
      • 19.15. 預先配置的參數
      • 19.16. Customized Options
      • 19.17. Developer Options
      • 19.18. Short Options
    • 20. 使用者認證
      • 20.1. 設定檔:pg_hba.conf
      • 20.2. User Name Maps
      • 20.3. Authentication Methods
      • 20.4. Authentication Problems
    • 21. 資料庫角色
      • 21.1. Database Roles
      • 21.2. Role Attributes
      • 21.3. Role Membership
      • 21.4. 移除角色
      • 21.5. Default Roles
      • 21.6. Function Security
    • 22. Managing Databases
      • 22.1. Overview
      • 22.2. Creating a Database
      • 22.3. 樣版資料庫
      • 22.4. Database Configuration
      • 22.5. Destroying a Database
      • 22.6. Tablespaces
    • 23. 語系
      • 23.1. 語系支援
      • 23.2. Collation Support
      • 23.3. 字元集支援
    • 24. 例行性資料庫維護工作
      • 24.1. 例行性資料清理
      • 24.2. 定期重建索引
      • 24.3. Log File Maintenance
    • 25. 備份及還原
      • 25.1. SQL Dump
      • 25.2. File System Level Backup
      • 25.3. Continuous Archiving and Point-in-Time Recovery (PITR)
    • 26. High Availability, Load Balancing, and Replication
      • 26.1. Comparison of Different Solutions
      • 26.2. 日誌轉送備用伺服器 Log-Shipping Standby Servers
      • 26.3. Failover
      • 26.4. Alternative Method for Log Shipping
      • 26.5. Hot Standby
    • 27. Recovery Configuration
      • 27.1. Archive Recovery Settings
      • 27.2. Recovery Target Settings
      • 27.3. Standby Server Settings
    • 28. 監控資料庫活動
      • 28.1. Standard Unix Tools
      • 28.2. 統計資訊收集器
      • 28.3. Viewing Locks
      • 28.4. Progress Reporting
      • 28.5. Dynamic Tracing
    • 29. Monitoring Disk Usage
      • 29.1. Determining Disk Usage
      • 29.2. Disk Full Failure
    • 30. 高可靠度及預寫日誌
      • 30.1. Reliability
      • 30.2. Write-Ahead Logging (WAL)
      • 30.3. Asynchronous Commit
      • 30.4. WAL Configuration
      • 30.5. WAL Internals
    • 31. 邏輯複寫(Logical Replication)
      • 31.1. 發佈(Publication)
      • 31.2. 訂閱(Subscription)
      • 31.3. 衝突處理
      • 31.4. 限制
      • 31.5. 架構
      • 31.6. 監控
      • 31.7. 安全性
      • 31.8. 系統設定
      • 31.9. 快速設定
    • 32. Just-in-Time Compilation (JIT)
      • 32.1. What is JIT compilation?
      • 32.2. When to JIT?
      • 32.3. Configuration
      • 32.4. Extensibility
    • 33. 迴歸測試
      • 33.1. Running the Tests
      • 33.2. Test Evaluation
      • 33.3. Variant Comparison Files
      • 33.4. TAP Tests
      • 33.5. Test Coverage Examination
  • IV. 用戶端介面
    • 34. libpq - C Library
      • 34.1. 資料庫連線控制函數
      • 34.2. 連線狀態函數
      • 34.3. Command Execution Functions
      • 34.4. Asynchronous Command Processing
      • 34.5. Retrieving Query Results Row-By-Row
      • 34.6. Canceling Queries in Progress
      • 34.7. The Fast-Path Interface
      • 34.8. Asynchronous Notification
      • 34.9. Functions Associated with the COPY Command
      • 34.10. Control Functions
      • 34.11. Miscellaneous Functions
      • 34.12. Notice Processing
      • 34.13. Event System
      • 34.14. 環境變數
      • 34.15. 密碼檔
      • 34.16. The Connection Service File
      • 34.17. LDAP Lookup of Connection Parameters
      • 34.18. SSL Support
      • 34.19. Behavior in Threaded Programs
      • 34.20. Building libpq Programs
      • 34.21. Example Programs
    • 35. Large Objects
      • 35.1. Introduction
      • 35.2. Implementation Features
      • 35.3. Client Interfaces
      • 35.4. Server-side Functions
      • 35.5. Example Program
    • 36. ECPG - Embedded SQL in C
      • 36.1. The Concept
      • 36.2. Managing Database Connections
      • 36.3. Running SQL Commands
      • 36.4. Using Host Variables
      • 36.5. Dynamic SQL
      • 36.6. pgtypes Library
      • 36.7. Using Descriptor Areas
      • 36.8. Error Handling
      • 36.9. Preprocessor Directives
      • 36.10. Processing Embedded SQL Programs
      • 36.11. Library Functions
      • 36.12. Large Objects
      • 36.13. C++ Applications
      • 36.14. Embedded SQL Commands
      • 36.15. Informix Compatibility Mode
      • 36.16. Internals
    • 37. The Information Schema
      • 37.1. The Schema
      • 37.2. Data Types
      • 37.3. information_schema_catalog_name
      • 37.4. administrable_role_authorizations
      • 37.5. applicable_roles
      • 37.6. attributes
      • 37.7. character_sets
      • 37.8. check_constraint_routine_usage
      • 37.9. check_constraints
      • 37.10. collations
      • 37.11. collation_character_set_applicability
      • 37.12. column_domain_usage
      • 37.13. column_options
      • 37.14. column_privileges
      • 37.15. column_udt_usage
      • 37.16. columns
      • 37.17. constraint_column_usage
      • 37.18. constraint_table_usage
      • 37.19. data_type_privileges
      • 37.20. domain_constraints
      • 37.21. domain_udt_usage
      • 37.22. domains
      • 37.23. element_types
      • 37.24. enabled_roles
      • 37.25. foreign_data_wrapper_options
      • 37.26. foreign_data_wrappers
      • 37.27. foreign_server_options
      • 37.28. foreign_servers
      • 37.29. foreign_table_options
      • 37.30. foreign_tables
      • 37.31. key_column_usage
      • 37.32. parameters
      • 37.33. referential_constraints
      • 37.34. role_column_grants
      • 37.35. role_routine_grants
      • 37.36. role_table_grants
      • 37.37. role_udt_grants
      • 37.38. role_usage_grants
      • 37.39. routine_privileges
      • 37.40. routines
      • 37.41. schemata
      • 37.42. sequences
      • 37.43. sql_features
      • 37.44. sql_implementation_info
      • 37.45. sql_languages
      • 37.46. sql_packages
      • 37.47. sql_parts
      • 37.48. sql_sizing
      • 37.49. sql_sizing_profiles
      • 37.50. table_constraints
      • 37.51. table_privileges
      • 37.52. tables
      • 37.53. transforms
      • 37.54. triggered_update_columns
      • 37.55. triggers
      • 37.56. udt_privileges
      • 37.57. usage_privileges
      • 37.58. user_defined_types
      • 37.59. user_mapping_options
      • 37.60. user_mappings
      • 37.61. view_column_usage
      • 37.62. view_routine_usage
      • 37.63. view_table_usage
      • 37.64. views
  • V. 資料庫程式設計
    • 38. SQL 延伸功能
      • 38.1. How Extensibility Works
      • 38.2. The PostgreSQL Type System
      • 38.3. 使用者自訂函數
      • 38.4. User-defined Procedures
      • 38.5. Query Language (SQL) Functions
      • 38.6. Function Overloading
      • 38.7. 函數易變性類別
      • 38.8. Procedural Language Functions
      • 38.9. Internal Functions
      • 38.10. C-Language Functions
      • 38.11. User-defined Aggregates
      • 38.12. User-defined Types
      • 38.13. User-defined Operators
      • 38.14. Operator Optimization Information
      • 38.15. Interfacing Extensions To Indexes
      • 38.16. Packaging Related Objects into an Extension
      • 38.17. Extension Building Infrastructure
    • 39. Triggers
    • 40. Event Triggers
    • 41. 規則系統
      • 41.1. The Query Tree
      • 41.2. Views and the Rule System
      • 41.3. Materialized Views
      • 41.4. Rules on INSERT, UPDATE, and DELETE
      • 41.5. 規則及權限
      • 41.6. Rules and Command Status
      • 41.7. Rules Versus Triggers
    • 42. Procedural Languages(程序語言)
      • 42.1. Installing Procedural Languages
    • 43. PL/pgSQL - SQL Procedural Language
      • 43.5. 基本語法
    • 44. PL/Tcl - Tcl Procedural Language
    • 45. PL/Perl - Perl Procedural Language
    • 46. PL/Python - Python Procedural Language
    • 47. Server Programming Interface
    • 48. Background Worker Processes
    • 49. Logical Decoding
    • 50. Replication Progress Tracking
  • VI. 參考資訊
    • I. SQL 指令
      • ALTER DATABASE
      • ALTER DEFAULT PRIVILEGES
      • ALTER EXTENSION
      • ALTER FUNCTION
      • ALTER INDEX
      • ALTER LANGUAGE
      • ALTER MATERIALIZED VIEW
      • ALTER POLICY
      • ALTER PUBLICATION
      • ALTER ROLE
      • ALTER RULE
      • ALTER SCHEMA
      • ALTER SEQUENCE
      • ALTER STATISTICS
      • ALTER SUBSCRIPTION
      • ALTER TABLE
      • ALTER TABLESPACE
      • ALTER TRIGGER
      • ALTER TYPE
      • ALTER VIEW
      • ANALYZE
      • CLUSTER
      • COMMENT
      • COPY
      • CREATE CAST
      • CREATE DATABASE
      • CREATE EXTENSION
      • CREATE FOREIGN TABLE
      • CREATE FOREIGN DATA WRAPPER
      • CREATE FUNCTION
      • CREATE INDEX
      • CREATE LANGUAGE
      • CREATE MATERIALIZED VIEW
      • CREATE DOMAIN
      • CREATE POLICY
      • CREATE PROCEDURE
      • CREATE PUBLICATION
      • CREATE ROLE
      • CREATE RULE
      • CREATE SCHEMA
      • CREATE SEQUENCE
      • CREATE SERVER
      • CREATE STATISTICS
      • CREATE SUBSCRIPTION
      • CREATE TABLE
      • CREATE TABLE AS
      • CREATE TABLESPACE
      • CREATE TRANSFORM
      • CREATE TRIGGER
      • CREATE TYPE
      • CREATE USER
      • CREATE USER MAPPING
      • CREATE VIEW
      • DELETE
      • DO
      • DROP DATABASE
      • DROP EXTENSION
      • DROP FUNCTION
      • DROP INDEX
      • DROP LANGUAGE
      • DROP MATERIALIZED VIEW
      • DROP OWNED
      • DROP POLICY
      • DROP ROLE
      • DROP RULE
      • DROP SCHEMA
      • DROP SEQUENCE
      • DROP STATISTICS
      • DROP SUBSCRIPTION
      • DROP TABLE
      • DROP TABLESPACE
      • DROP TRANSFORM
      • DROP TRIGGER
      • DROP TYPE
      • DROP USER
      • DROP VIEW
      • EXECUTE
      • EXPLAIN
      • GRANT
      • IMPORT FOREIGN SCHEMA
      • INSERT
      • LISTEN
      • LOAD
      • NOTIFY
      • PREPARE TRANSACTION
      • REASSIGN OWNED
      • REFRESH MATERIALIZED VIEW
      • REINDEX
      • RESET
      • REVOKE
      • SELECT
      • SELECT INTO
      • SET
      • SET CONSTRAINTS
      • SET ROLE
      • SET SESSION AUTHORIZATION
      • SET TRANSACTION
      • SHOW
      • TRUNCATE
      • UNLISTEN
      • UPDATE
      • VACUUM
      • VALUES
    • II. PostgreSQL 用戶端工具
      • createdb
      • createuser
      • dropdb
      • dropuser
      • pgbench
      • pg_dump
      • psql
      • vacuumdb
    • III. PostgreSQL 伺服器應用程式
      • pg_test_timing
      • postgres
  • VII. 資料庫進階
    • 52. 系統目錄
      • 52.3. pg_am
      • 52.7. pg_attribute
      • 52.8. pg_authid
      • 52.9. pg_auth_members
      • 52.11 pg_class
      • 52.12. pg_collation
      • 52.13. pg_constraint
      • 52.15 pg_database
      • 52.26 pg_index
      • 52.29. pg_language
      • 52.32. pg_namespace
      • 52.33. pg_opclass
      • 52.38. pg_policy
      • 52.39. pg_proc
      • 52.44. pg_rewrite
      • 52.50. pg_statistic
      • 52.51. pg_statistic_ext
      • 52.54. pg_tablespace
      • 52.56. pg_trigger
      • 52.62. pg_type
      • 52.79. pg_replication_origin_status
      • 52.81 pg_roles
      • 52.85. pg_settings
      • 52.87. pg_stats
    • 53. Frontend/Backend Protocol
      • 53.1. Overview
      • 53.2. Message Flow
      • 53.3. SASL Authentication
      • 53.4. Streaming Replication Protocol
      • 53.5. Logical Streaming Replication Protocol
      • 53.6. Message Data Types
      • 53.7. Message Formats
      • 53.8. Error and Notice Message Fields
      • 53.9. Logical Replication Message Formats
      • 53.10. Summary of Changes since Protocol 2.0
    • 54. PostgreSQL 程式撰寫慣例
      • 54.1. Formatting
      • 54.2. Reporting Errors Within the Server
      • 54.3. Error Message Style Guide
      • 54.4. Miscellaneous Coding Conventions
    • 56. Writing A Procedural Language Handler
    • 64. GiST Indexes
      • 64.1. Introduction
      • 64.2. Built-in Operator Classes
      • 64.3. Extensibility
      • 64.4. Implementation
      • 64.5. Examples
    • 65. SP-GiST Indexes
      • 65.1. Introduction
      • 65.2. Built-in Operator Classes
      • 65.3. Extensibility
      • 65.4. Implementation
      • 65.5. Examples
    • 66. GIN 索引
      • 66.1. 簡介
      • 66.2. 內建運算子類
      • 66.3. Extensibility
      • 66.4. Implementation
      • 66.5. GIN Tips and Tricks
      • 66.6. Limitations
      • 66.7. Examples
    • 67. BRIN Indexes
      • 67.1. Introduction
      • 67.2. Built-in Operator Classes
      • 67.3. Extensibility
    • 68. 資料庫實體儲存格式
      • 68.2. TOAST
      • 68.4 可視性映射表(Visibility Map)
    • 70. How the Planner Uses Statistics
      • 70.2. Multivariate Statistics Examples
  • VIII. 附錄
    • A. PostgreSQL錯誤代碼
    • B. 日期時間格式支援
      • B.1. 日期時間解譯流程
      • B.2. 日期時間慣用字
      • B.3. 日期時間設定檔
      • B.4. 日期時間的沿革
    • C. SQL 關鍵字
    • D. SQL 相容性
    • E. 版本資訊
    • F. 延伸支援模組
      • F.4. auto_explain
      • F.11. dblink
        • dblink
      • F.33. pg_visibility
    • G. Additional Supplied Programs
      • G.1. Client Applications
        • oid2name
        • vacuumlo
      • G.2. Server Applications
        • pg_standby
    • H. 外部專案
      • H.1. 用戶端介面
      • H.2. Administration Tools
      • H.3. Procedural Languages
      • H.4. Extensions
    • I. The Source Code Repository
      • I.1. Getting The Source via Git
    • J. 文件取得
    • K. 縮寫字
  • 參考書目
Powered by GitBook
On this page
  • 8.17.1. Built-in Range Types
  • 8.17.2. Examples
  • 8.17.3. Inclusive and Exclusive Bounds
  • 8.17.4. Infinite (Unbounded) Ranges
  • 8.17.5. Range Input/Output
  • 8.17.6. Constructing Ranges
  • 8.17.7. Discrete Range Types
  • 8.17.8. Defining New Range Types
  • 8.17.9. Indexing
  • 8.17.10. Constraints on Ranges

Was this helpful?

Edit on Git
Export as PDF
  1. II. SQL查詢語言
  2. 8. 資料型別

8.17. 範圍型別

版本:11

Previous8.16. 複合型別Next8.18. 指標型別

Last updated 6 years ago

Was this helpful?

Range types are data types representing a range of values of some element type (called the range's subtype). For instance, ranges of timestamp might be used to represent the ranges of time that a meeting room is reserved. In this case the data type is tsrange (short for “timestamp range”), and timestamp is the subtype. The subtype must have a total order so that it is well-defined whether element values are within, before, or after a range of values.

Range types are useful because they represent many element values in a single range value, and because concepts such as overlapping ranges can be expressed clearly. The use of time and date ranges for scheduling purposes is the clearest example; but price ranges, measurement ranges from an instrument, and so forth can also be useful.

8.17.1. Built-in Range Types

PostgreSQL comes with the following built-in range types:

  • int4range — Range of integer

  • int8range — Range of bigint

  • numrange — Range of numeric

  • tsrange — Range of timestamp without time zone

  • tstzrange — Range of timestamp with time zone

  • daterange — Range of date

In addition, you can define your own range types; see for more information.

8.17.2. Examples

CREATE TABLE reservation (room int, during tsrange);
INSERT INTO reservation VALUES
    (1108, '[2010-01-01 14:30, 2010-01-01 15:30)');

-- Containment
SELECT int4range(10, 20) @> 3;

-- Overlaps
SELECT numrange(11.1, 22.2) && numrange(20.0, 30.0);

-- Extract the upper bound
SELECT upper(int8range(15, 25));

-- Compute the intersection
SELECT int4range(10, 20) * int4range(15, 25);

-- Is the range empty?
SELECT isempty(numrange(1, 5));

8.17.3. Inclusive and Exclusive Bounds

Every non-empty range has two bounds, the lower bound and the upper bound. All points between these values are included in the range. An inclusive bound means that the boundary point itself is included in the range as well, while an exclusive bound means that the boundary point is not included in the range.

The functions lower_inc and upper_inc test the inclusivity of the lower and upper bounds of a range value, respectively.

8.17.4. Infinite (Unbounded) Ranges

The lower bound of a range can be omitted, meaning that all points less than the upper bound are included in the range. Likewise, if the upper bound of the range is omitted, then all points greater than the lower bound are included in the range. If both lower and upper bounds are omitted, all values of the element type are considered to be in the range.

This is equivalent to considering that the lower bound is “minus infinity”, or the upper bound is “plus infinity”, respectively. But note that these infinite values are never values of the range's element type, and can never be part of the range. (So there is no such thing as an inclusive infinite bound — if you try to write one, it will automatically be converted to an exclusive bound.)

Also, some element types have a notion of “infinity”, but that is just another value so far as the range type mechanisms are concerned. For example, in timestamp ranges, [today,] means the same thing as [today,). But [today,infinity] means something different from [today,infinity) — the latter excludes the special timestamp value infinity.

The functions lower_inf and upper_inf test for infinite lower and upper bounds of a range, respectively.

8.17.5. Range Input/Output

The input for a range value must follow one of the following patterns:

(lower-bound,upper-bound)
(lower-bound,upper-bound]
[lower-bound,upper-bound)
[lower-bound,upper-bound]
empty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive, as described previously. Notice that the final pattern is empty, which represents an empty range (a range that contains no points).

The lower-bound may be either a string that is valid input for the subtype, or empty to indicate no lower bound. Likewise, upper-bound may be either a string that is valid input for the subtype, or empty to indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound value contains parentheses, brackets, commas, double quotes, or backslashes, since these characters would otherwise be taken as part of the range syntax. To put a double quote or backslash in a quoted bound value, precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound value is taken to represent a double quote character, analogously to the rules for single quotes in SQL literal strings.) Alternatively, you can avoid quoting and use backslash-escaping to protect all data characters that would otherwise be taken as range syntax. Also, to write a bound value that is an empty string, write "", since writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses or brackets is taken as part of the lower or upper bound value. (Depending on the element type, it might or might not be significant.)

Note

Examples:

-- includes 3, does not include 7, and does include all points in between
SELECT '[3,7)'::int4range;

-- does not include either 3 or 7, but includes all points in between
SELECT '(3,7)'::int4range;

-- includes only the single point 4
SELECT '[4,4]'::int4range;

-- includes no points (and will be normalized to 'empty')
SELECT '[4,4)'::int4range;

8.17.6. Constructing Ranges

Each range type has a constructor function with the same name as the range type. Using the constructor function is frequently more convenient than writing a range literal constant, since it avoids the need for extra quoting of the bound values. The constructor function accepts two or three arguments. The two-argument form constructs a range in standard form (lower bound inclusive, upper bound exclusive), while the three-argument form constructs a range with bounds of the form specified by the third argument. The third argument must be one of the strings “()”, “(]”, “[)”, or “[]”. For example:

-- The full form is: lower bound, upper bound, and text argument indicating
-- inclusivity/exclusivity of bounds.
SELECT numrange(1.0, 14.0, '(]');

-- If the third argument is omitted, '[)' is assumed.
SELECT numrange(1.0, 14.0);

-- Although '(]' is specified here, on display the value will be converted to
-- canonical form, since int8range is a discrete range type (see below).
SELECT int8range(1, 14, '(]');

-- Using NULL for either bound causes the range to be unbounded on that side.
SELECT numrange(NULL, 2.2);

8.17.7. Discrete Range Types

A discrete range is one whose element type has a well-defined “step”, such as integer or date. In these types two elements can be said to be adjacent, when there are no valid values between them. This contrasts with continuous ranges, where it's always (or almost always) possible to identify other element values between two given values. For example, a range over the numeric type is continuous, as is a range over timestamp. (Even though timestamp has limited precision, and so could theoretically be treated as discrete, it's better to consider it continuous since the step size is normally not of interest.)

Another way to think about a discrete range type is that there is a clear idea of a “next” or “previous” value for each element value. Knowing that, it is possible to convert between inclusive and exclusive representations of a range's bounds, by choosing the next or previous element value instead of the one originally given. For example, in an integer range type [4,8] and (3,9) denote the same set of values; but this would not be so for a range over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size for the element type. The canonicalization function is charged with converting equivalent values of the range type to have identical representations, in particular consistently inclusive or exclusive bounds. If a canonicalization function is not specified, then ranges with different formatting will always be treated as unequal, even though they might represent the same set of values in reality.

The built-in range types int4range, int8range, and daterange all use a canonical form that includes the lower bound and excludes the upper bound; that is, [). User-defined range types can use other conventions, however.

8.17.8. Defining New Range Types

Users can define their own range types. The most common reason to do this is to use ranges over subtypes not provided among the built-in range types. For example, to define a new range type of subtype float8:

CREATE TYPE floatrange AS RANGE (
    subtype = float8,
    subtype_diff = float8mi
);

SELECT '[1.234, 5.678]'::floatrange;

Because float8 has no meaningful “step”, we do not define a canonicalization function in this example.

Defining your own range type also allows you to specify a different subtype B-tree operator class or collation to use, so as to change the sort ordering that determines which values fall into a given range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE command should specify a canonical function. The canonicalization function takes an input range value, and must return an equivalent range value that may have different bounds and formatting. The canonical output for two ranges that represent the same set of values, for example the integer ranges [1, 7] and [1, 8), must be identical. It doesn't matter which representation you choose to be the canonical one, so long as two equivalent values with different formattings are always mapped to the same value with the same formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonicalization function might round off boundary values, in case the desired step size is larger than what the subtype is capable of storing. For instance, a range type over timestamp could be defined to have a step size of an hour, in which case the canonicalization function would need to round off bounds that weren't a multiple of an hour, or perhaps throw an error instead.

In addition, any range type that is meant to be used with GiST or SP-GiST indexes should define a subtype difference, or subtype_diff, function. (The index will still work without subtype_diff, but it is likely to be considerably less efficient than if a difference function is provided.) The subtype difference function takes two input values of the subtype, and returns their difference (i.e., X minus Y) represented as a float8 value. In our example above, the function float8mi that underlies the regular float8 minus operator can be used; but for any other subtype, some type conversion would be necessary. Some creative thought about how to represent differences as numbers might be needed, too. To the greatest extent possible, the subtype_diff function should agree with the sort ordering implied by the selected operator class and collation; that is, its result should be positive whenever its first argument is greater than its second according to the sort ordering.

A less-oversimplified example of a subtype_diff function is:

CREATE FUNCTION time_subtype_diff(x time, y time) RETURNS float8 AS
'SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sql STRICT IMMUTABLE;

CREATE TYPE timerange AS RANGE (
    subtype = time,
    subtype_diff = time_subtype_diff
);

SELECT '[11:10, 23:00]'::timerange;

8.17.9. Indexing

GiST and SP-GiST indexes can be created for table columns of range types. For instance, to create a GiST index:

CREATE INDEX reservation_idx ON reservation USING GIST (during);

In addition, B-tree and hash indexes can be created for table columns of range types. For these index types, basically the only useful range operation is equality. There is a B-tree sort ordering defined for range values, with corresponding < and > operators, but the ordering is rather arbitrary and not usually useful in the real world. Range types' B-tree and hash support is primarily meant to allow sorting and hashing internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges

CREATE TABLE reservation (
    during tsrange,
    EXCLUDE USING GIST (during WITH &&)
);

That constraint will prevent any overlapping values from existing in the table at the same time:

INSERT INTO reservation VALUES
    ('[2010-01-01 11:30, 2010-01-01 15:00)');
INSERT 0 1

INSERT INTO reservation VALUES
    ('[2010-01-01 14:45, 2010-01-01 15:45)');
ERROR:  conflicting key value violates exclusion constraint "reservation_during_excl"
DETAIL:  Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00")) conflicts
with existing key (during)=(["2010-01-01 11:30:00","2010-01-01 15:00:00")).
CREATE EXTENSION btree_gist;
CREATE TABLE room_reservation (
    room text,
    during tsrange,
    EXCLUDE USING GIST (room WITH =, during WITH &&)
);

INSERT INTO room_reservation VALUES
    ('123A', '[2010-01-01 14:00, 2010-01-01 15:00)');
INSERT 0 1

INSERT INTO room_reservation VALUES
    ('123A', '[2010-01-01 14:30, 2010-01-01 15:30)');
ERROR:  conflicting key value violates exclusion constraint "room_reservation_room_during_excl"
DETAIL:  Key (room, during)=(123A, ["2010-01-01 14:30:00","2010-01-01 15:30:00")) conflicts
with existing key (room, during)=(123A, ["2010-01-01 14:00:00","2010-01-01 15:00:00")).

INSERT INTO room_reservation VALUES
    ('123B', '[2010-01-01 14:30, 2010-01-01 15:30)');
INSERT 0 1

See and for complete lists of operators and functions on range types.

In the text form of a range, an inclusive lower bound is represented by “[” while an exclusive lower bound is represented by “(”. Likewise, an inclusive upper bound is represented by “]”, while an exclusive upper bound is represented by “)”. (See for more details.)

These rules are very similar to those for writing field values in composite-type literals. See for additional commentary.

See for more information about creating range types.

A GiST or SP-GiST index can accelerate queries involving these range operators: =, &&, <@, @>, <<, >>, -|-, &<, and &> (see for more information).

While UNIQUE is a natural constraint for scalar values, it is usually unsuitable for range types. Instead, an exclusion constraint is often more appropriate (see ). Exclusion constraints allow the specification of constraints such as “non-overlapping” on a range type. For example:

You can use the extension to define exclusion constraints on plain scalar data types, which can then be combined with range exclusions for maximum flexibility. For example, after btree_gist is installed, the following constraint will reject overlapping ranges only if the meeting room numbers are equal:

CREATE TYPE
Table 9.50
Table 9.51
Section 8.17.5
Section 8.16.6
CREATE TYPE
Table 9.50
CREATE TABLE ... CONSTRAINT ... EXCLUDE
btree_gist