See Section 8.17 for an overview of range types.
Table 9.55 shows the specialized operators available for range types. Table 9.56 shows the specialized operators available for multirange types. In addition to those, the usual comparison operators shown in Table 9.1 are available for range and multirange types. The comparison operators order first by the range lower bounds, and only if those are equal do they compare the upper bounds. The multirange operators compare each range until one is unequal. This does not usually result in a useful overall ordering, but the operators are provided to allow unique indexes to be constructed on ranges.
The left-of/right-of/adjacent operators always return false when an empty range or multirange is involved; that is, an empty range is not considered to be either before or after any other range.
Elsewhere empty ranges and multiranges are treated as the additive identity: anything unioned with an empty value is itself. Anything minus an empty value is itself. An empty multirange has exactly the same points as an empty range. Every range contains the empty range. Every multirange contains as many empty ranges as you like.
The range union and difference operators will fail if the resulting range would need to contain two disjoint sub-ranges, as such a range cannot be represented. There are separate operators for union and difference that take multirange parameters and return a multirange, and they do not fail even if their arguments are disjoint. So if you need a union or difference operation for ranges that may be disjoint, you can avoid errors by first casting your ranges to multiranges.
Table 9.57 shows the functions available for use with range types. Table 9.58 shows the functions available for use with multirange types.
The lower_inc
, upper_inc
, lower_inf
, and upper_inf
functions all return false for an empty range or multirange.